YOLOv7与MediaPipe在人体姿态估计上的对比
ztj100 2025-04-24 10:40 4 浏览 0 评论
前期文章的分享,我们介绍了YOLOv7人体姿态估计的文章以及MediaPipe人体姿态估计方面的文章。由于YOLOv7与MediaPipe都可以进行人体姿态估计,我们本期就对比一下2个算法的不同点。
人工智能领域也卷了吗——YOLO系列又被刷新了,YOLOv7横空出世
基于深度学习的人体姿态估计
自2014年Google首次发布DeepPose以来,基于深度学习的姿态估计算法已经取得了较大的进步。这些算法通常分两个阶段工作。
人员检测
关键点定位
根据设备[CPU/GPU/TPU]的不同,不同框架的性能有所不同。有许多两阶段姿态估计模型在基准测试中表现良好,例如:Alpha Pose、OpenPose、Deep Pose等等。然而,由于两阶模型相对复杂,获得的实时性能非常昂贵。这些模型在GPU上运行得很快,但在CPU上运行的较慢。就效率和准确性而言,MediaPipe是一个很好的姿态估计框架。它在CPU上生成实时检测,且速度很快。
与传统的姿态估计算法不同,YOLOv7姿态是一个单级多人关键点检测器。它具有自顶向下和自底向上两种方法中的优点。YOLOv7姿态是在COCO数据集上训练的,前期的文章我们也分享过YOLOv7人体姿态检测的代码。
YOLOv7 是 YOLO 系列中最先进的新型物体检测器。根据论文,它是迄今为止最快、最准确的实时物体检测算法。根据 YOLOv7 论文,最好的模型获得了 56.8% 的平均精度(AP),这是所有已知对象检测算法中最高的。各种模型的速度范围为 5-160 FPS。与基础模型相比,YOLOv7 将参数数量减少到40%,计算量减少 50%。
MediaPipe人体姿态检测
MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。在谷歌,一系列重要产品,如 、Google Lens、ARCore、Google Home 以及 ,都已深度整合了 MediaPipe。
MediaPipe 的核心框架由 C++ 实现,并提供 Java 以及 Objective C 等语言的支持。MediaPipe 的主要概念包括数据包(Packet)、数据流(Stream)、计算单元(Calculator)、图(Graph)以及子图(Subgraph)。
MediaPipe Pose是用于高保真人体姿势跟踪的ML解决方案,利用BlazePose研究成果,还从ML Kit Pose Detection API中获得了RGB视频帧的整个33个2D标志(或25个上身标志)。当前最先进的方法主要依靠强大的桌面环境进行推理,而MediaPipe Pose的方法可在大多数现代手机,甚至是Web上实现实时性能。
MediaPipe中有三个模型用于姿势估计。
BlazePose GHUM Heavy
BlazePose GHUM Full
BlazePose GHUM Lite
YOLOv7 vs MediaPipe特征对比
YOLOv7 | MediaPipe | |
Topology | 17 Keypoints COCO | 33 Keypoints COCO + Blaze Palm + Blaze Face |
Workflow | Detection runs for all frames | Detection runs once followed by tracker until occlusion occurs |
GPU support | CPU and GPU | CPU |
Segmentation | Segmentation not integrated to pose directly | Segmentation integrated |
Number of persons | Multi-person | Single person |
YOLOv7是一个多人检测框架。MediaPipe是一个单人检测框架(主要原因是只用于CPU,速度较快),因此在我们实现人体姿态检测时,需要关注是否只检测多人,或者单人,当然对自己的硬件配置也有较高的要求。
MediaPipe 代码实现人体姿态检测
cap = cv2.VideoCapture(0)
time.sleep(2)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
pose.close()
cap.release()
由于MediaPipe是一个单人检测框架,因此在视频中,MediaPipe只检测单个人的姿态,其他人体姿态则会忽略,当然,软件会检测哪个人体姿态,理论上是最前面的人体姿态,但是通过实验后,其实并不完全是这样。从上图可以看出,虽然MediaPipe仅支持使用在CPU上,但是检测速度与精度相当快,缺点是智能进行单人体姿态检测。
YOLOv7 代码实现人体姿态检测
从 YOLOv7-Tiny 模型开始,参数刚刚超过 600 万。它的验证 AP 为 35.2%,击败了具有相似参数的 YOLOv4-Tiny 模型。具有近 3700 万个参数的 YOLOv7 模型提供了 51.2% 的 AP,再次击败了具有更多参数的 YOLOv4 和 YOLOR 的变体。
YOLO7 系列中较大的模型,YOLOv7-X、YOLOv7-E6、YOLOv7-D6 和 YOLOv7-E6E。所有这些都击败了 YOLOR 模型,它们的参数数量相似,AP 分别为 52.9%、55.9%、56.3% 和 56.8%。
def pose_video(frame):
mapped_img = frame.copy()
img = letterbox(frame, input_size, stride=64, auto=True)[0]
print(img.shape)
img_ = img.copy()
img = transforms.ToTensor()(img)
img = torch.tensor(np.array([img.numpy()]))
img = img.to(device)
with torch.no_grad():
t1 = time.time()
output, _ = model(img)
t2 = time.time()
fps = 1/(t2 - t1)
output = non_max_suppression_kpt(output,
0.25, # Conf. Threshold.
0.65, # IoU Threshold.
nc=1, # Number of classes.
nkpt=17, # Number of keypoints.
kpt_label=True)
output = output_to_keypoint(output)
nimg = img[0].permute(1, 2, 0) * 255
nimg = nimg.cpu().numpy().astype(np.uint8)
nimg = cv2.cvtColor(nimg, cv2.COLOR_RGB2BGR)
for idx in range(output.shape[0]):
plot_skeleton_kpts(nimg, output[idx, 7:].T, 3)
return nimg, fps
由于YOLOv7是一个多人检测框架,因此在单个视频帧中,YOLOv7框架会实时检测多人体姿态。从上图可以看出,检测速度也是很快的,这是因为此例子使用的是GPU模型运行,若YOLOv7应用在CPU上面,则检测速度很慢。
MediaPipe与YOLOv7对比检测
从以上的介绍,我们知道,mediapipe是一个单人检测框架,因此检测速度特别快,同样的的一段检测对象,同样的使用CPU进行人体姿态检测,则mediapipe完全占绝对优势。
但是一旦上GPU,yolov7的优势就会大大的提高,可以看到,一旦用上了GPU,yolov7的检测速度就达到了84FPS,而由于mediapipe仅仅用于CPU,就算加上GPU,也发挥不到GPU的优势。
其他文章参考
MediaPipe 集成人脸识别,人体姿态评估,人手检测模型
颠覆2D对象检测模型,MediaPipe 3D对象检测还原真实的对象特征
MediaPipe Face Detection可运行在移动设备上的亚毫秒级人脸检测
相关推荐
- 如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL
-
阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...
- Python数据分析:探索性分析
-
写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...
- C++基础语法梳理:算法丨十大排序算法(二)
-
本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...
- C 语言的标准库有哪些
-
C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...
- [深度学习] ncnn安装和调用基础教程
-
1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...
- 用rust实现经典的冒泡排序和快速排序
-
1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- C++特性使用建议
-
1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...
- Qt4/5升级到Qt6吐血经验总结V202308
-
00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...
- 到底什么是C++11新特性,请看下文
-
C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...
- 掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!
-
C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...
- 经典算法——凸包算法
-
凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...
- 一起学习c++11——c++11中的新增的容器
-
c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...
- C++ 编程中的一些最佳实践
-
1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)