百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

OpenCV(25)——矩特征

ztj100 2025-04-24 10:40 14 浏览 0 评论

什么是矩特征

通过前篇博文的学习,我们知道如何从图像中分解轮廓。而矩特征是比较两个轮廓最简单的方法,通过它们的轮廓矩就能判断。

首先,轮廓矩代表了一个轮廓,一副图像,一组点集的全局特征。矩信息包含了对应对象不同类型的几何特征,比如大小,位置,角度,形状等。矩特征被广泛应用在图像识别,模式识别的场景中。

矩的计算

在OpenCV中,它给我们提供了cv2.moments()函数来获取图像的轮廓矩,其完整的定义如下:

def moments(array, binaryImage=None): 

array:可以是点集,也可以是灰度图像或二值图像。当array为点集时,函数会把这些点集当成轮廓中的顶点,把整个点集作为一条轮廓,而不是把它们当成独立的点来看。

binaryImage:布尔类型,当它为True时,array内所有的非零值都被处理为1。该参数仅在array为图像时有效。

通过该函数,我们能判断两个轮廓是否相似。例如,由两个轮廓,不管它们出现在图像的哪个位置,我们都可以通过函数cv2.moments()矩特征判断其面积是否一致。

矩的特征

上面我们说的一般是空间矩,但是矩特征分为3种,主要包括:

(1)空间矩

零阶矩:m00

一阶矩:m10,m01

二阶矩:m20,m11,m02

三阶矩:m30,m21,m12,m03

(2)中心矩

二阶中心矩:mu20,mu11,mu02

三阶中心矩:mu30,mu21,mu12,mu03

(3)归一化中心矩

二阶Hu矩:nu20,nu11,nu02

三阶Hu矩:nu30,nu21,nu12,nu03

对于零阶矩来说,通过上面的比较就可以判断面积是否一致。

但是对于更高阶的图像来说,矩特征会随着位置的变化而变化的。为了解决这种问题,所以中心矩诞生了。中心矩是通过减去均值而获取平移的不变性,因而能够比较不同位置的两个对象是否一致。很明显,中心矩具有平移不变性特征。

除了平移之外,在图像中我们还会碰到缩放的情况,也就是说,我们同样喜欢缩放后也能判断其特征。这个时候,就需要归一化中心矩。

归一化中心矩通过除于物体总尺寸而获得缩放不变性。它通过上述计算提取对象的归一化中心矩属性值,该属性值不仅具有平移不变性,还具有缩放不变性。

cv2.moments()函数会同时计算上述空间矩,中心矩以及归一化中心矩

提取一副图像的特征矩

这里,我们还是通过本文首图来分析函数的具体返回值,代码如下:

import cv2

img = cv2.imread("24.jpg")
cv2.imshow("img", img)
# 转换为灰度图像
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转换为二值图
ret, binary = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
# 获取图像的轮廓参数
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)


for i in range(len(contours)):
    print(str(i),cv2.moments(contours[i]))

运行之后,控制台会输出如下信息:

可以看到,轮廓的所有矩特征都会一一列出来。正好对应我们上面列举的矩的特征分类。

计算轮廓的面积

通过上面的矩特征,我们可以计算轮廓的面积。

在OpenCV中,它给我们提供cv2.contourArea()函数用于计算轮廓的面积,它接受cv2.findContours()函数的返回值contours作为参数。具体代码如下所示:

import cv2

img = cv2.imread("24.jpg")
cv2.imshow("img", img)
# 转换为灰度图像
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转换为二值图
ret, binary = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
# 获取图像的轮廓参数
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

for i in range(len(contours)):
    print("轮廓"+str(i)+"的面积" + str(cv2.contourArea(contours[i])))

运行之后,我们会得到3个轮廓的面积值:

通过该函数,我们可以筛选面积大于特定值,或者小于特性值的轮廓。

计算轮廓的长度

在OpenCV中,它给我们提供了cv2.arcLength()函数来计算轮廓的长度,其完整定义如下:

def arcLength(curve, closed):

curve:轮廓

closed:布尔类型,用来表示轮廓是否是封闭的。该值为True时,表示轮廓是封闭的。

这里还是一样,用本文首图作为测试对象,代码如下:

import cv2

img = cv2.imread("24.jpg")
cv2.imshow("img", img)
# 转换为灰度图像
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转换为二值图
ret, binary = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
# 获取图像的轮廓参数
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

for i in range(len(contours)):
    print("轮廓"+str(i)+"的长度" + str(cv2.arcLength(contours[i],True)))

运行之后,控制台会输出如下信息:

相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: