百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

「Plotly快速入门」用Plotly绘制了几张精湛的图表,美翻了

ztj100 2025-03-04 16:00 11 浏览 0 评论

作者:俊欣

来源:关于数据分析与可视化

说到Python当中的可视化模块,相信大家用的比较多的还是matplotlibseaborn等模块,今天小编来尝试用Plotly模块为大家绘制可视化图表,和前两者相比,用Plotly模块会指出来的可视化图表有着很强的交互性。

柱状图

我们先导入后面需要用到的模块并且生成一批假数据,

import numpy as np
import plotly.graph_objects as go

# create dummy data
vals = np.ceil(100 * np.random.rand(5)).astype(int)
keys = ["A", "B", "C", "D", "E"]

我们基于所生成的假数据来绘制柱状图,代码如下

fig = go.Figure()
fig.add_trace(
 go.Bar(x=keys, y=vals)
)
fig.update_layout(height=600, width=600)
fig.show()

output

可能读者会感觉到绘制出来的图表略显简单,我们再来完善一下,添加上标题和注解,代码如下

# create figure
fig = go.Figure()
# 绘制图表
fig.add_trace(
    go.Bar(x=keys, y=vals, hovertemplate="Key: %{x}
Value: %{y}") ) # 更新完善图表 fig.update_layout( font_family="Averta", hoverlabel_font_family="Averta", title_text="直方图", xaxis_title_text="X轴-键", xaxis_title_font_size=18, xaxis_tickfont_size=16, yaxis_title_text="Y轴-值", yaxis_title_font_size=18, yaxis_tickfont_size=16, hoverlabel_font_size=16, height=600, width=600 ) fig.show()

output

分组条形图和堆积条形图

例如我们有多组数据想要绘制成柱状图的话,我们先来创建好数据集

vals_2 = np.ceil(100 * np.random.rand(5)).astype(int)
vals_3 = np.ceil(100 * np.random.rand(5)).astype(int)

vals_array = [vals, vals_2, vals_3]

然后我们遍历获取列表中的数值并且绘制成条形图,代码如下

# 生成画布
fig = go.Figure()
# 绘制图表
for i, vals in enumerate(vals_array):
    fig.add_trace(
        go.Bar(x=keys, y=vals, name=f"Group {i+1}", hovertemplate=f"Group {i+1}
Key: %{{x}}
Value: %{{y}}") ) # 完善图表 fig.update_layout( barmode="group", ...... ) fig.show()

output

而我们想要变成堆积状的条形图,只需要修改代码中的一处即可,将fig.update_layout(barmode="group")修改成fig.update_layout(barmode="group")即可,我们来看一下出来的样子

箱型图

箱型图在数据统计分析当中也是应用相当广泛的,我们先来创建两个假数据

# create dummy data for boxplots
y1 = np.random.normal(size=1000)
y2 = np.random.normal(size=1000)

我们将上面生成的数据绘制成箱型图,代码如下

# 生成画布
fig = go.Figure()
# 绘制图表
fig.add_trace(
    go.Box(y=y1, name="Dataset 1"),
)
fig.add_trace(
    go.Box(y=y2, name="Dataset 2"),
)
fig.update_layout(
    ......
)
fig.show()

output

散点图和气泡图

接下来我们尝试来绘制一张散点图,也是一样的步骤,我们想尝试生成一些假数据,代码如下

x = [i for i in range(1, 10)]
y = np.ceil(1000 * np.random.rand(10)).astype(int)

然后我们来绘制散点图,调用的是Scatter()方法,代码如下

# create figure
fig = go.Figure()

fig.add_trace(
    go.Scatter(x=x, y=y, mode="markers", hovertemplate="x: %{x}
y: %{y}") ) fig.update_layout( ....... ) fig.show()

output

那么气泡图的话就是在散点图的基础上,根据数值的大小来设定散点的大小,我们再来创建一些假数据用来设定散点的大小,代码如下

s = np.ceil(30 * np.random.rand(5)).astype(int)

我们将上面用作绘制散点图的代码稍作修改,通过marker_size参数来设定散点的大小,如下所示

fig = go.Figure()

fig.add_trace(
    go.Scatter(x=x, y=y, mode="markers", marker_size=s, text=s, hovertemplate="x: %{x}
y: %{y}
Size: %{text}") ) fig.update_layout( ...... ) fig.show()

output

直方图

直方图相比较于上面提到的几种图表,总体上来说会稍微有点丑,但是通过直方图,读者可以更加直观地感受到数据的分布,我们先来创建一组假数据,代码如下

## 创建假数据
data = np.random.normal(size=1000)

然后我们来绘制直方图,调用的是Histogram()方法,代码如下

# 创建画布
fig = go.Figure()
# 绘制图表
fig.add_trace(
    go.Histogram(x=data, hovertemplate="Bin Edges: %{x}
Count: %{y}") ) fig.update_layout( height=600, width=600 ) fig.show()

output

我们再在上述图表的基础之上再进行进一步的格式优化,代码如下

# 生成画布
fig = go.Figure()
# 绘制图表
fig.add_trace(
    go.Histogram(x=data, histnorm="probability", hovertemplate="Bin Edges: %{x}
Count: %{y}") ) fig.update_layout( ...... ) fig.show()

output

多个子图拼凑到一块儿

相信大家都知道在matplotlib模块当中的subplots()方法可以将多个子图拼凑到一块儿,那么同样地在plotly当中也可以同样地将多个子图拼凑到一块儿,调用的是plotly模块当中make_subplots函数

from plotly.subplots import make_subplots
## 2行2列的图表
fig = make_subplots(rows=2, cols=2)
## 生成一批假数据用于图表的绘制
x = [i for i in range(1, 11)]
y = np.ceil(100 * np.random.rand(10)).astype(int)
s = np.ceil(30 * np.random.rand(10)).astype(int)
y1 = np.random.normal(size=5000)
y2 = np.random.normal(size=5000)

接下来我们将所要绘制的图表添加到add_trace()方法当中,代码如下

# 绘制图表
fig.add_trace(
    go.Bar(x=x, y=y, hovertemplate="x: %{x}
y: %{y}"), row=1, col=1 ) fig.add_trace( go.Histogram(x=y1, hovertemplate="Bin Edges: %{x}
Count: %{y}"), row=1, col=2 ) fig.add_trace( go.Scatter(x=x, y=y, mode="markers", marker_size=s, text=s, hovertemplate="x: %{x}
y: %{y}
Size: %{text}"), row=2, col=1 ) fig.add_trace( go.Box(y=y1, name="Dataset 1"), row=2, col=2 ) fig.add_trace( go.Box(y=y2, name="Dataset 2"), row=2, col=2 ) fig.update_xaxes(title_font_size=18, tickfont_size=16) fig.update_yaxes(title_font_size=18, tickfont_size=16) fig.update_layout( ...... ) fig.show()

output

CDA数据分析师分享案例,欢迎大家留言分享你的建议。

相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: