百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Grok 3 与 DeepSeek R1:谁更胜一筹?

ztj100 2025-03-01 16:13 54 浏览 0 评论

几个月前,DeepSeek 凭借其 V3、R1 和 Janus 模型震撼了 AI 世界。而最近,埃隆·马斯克的 Grok 3 也加入了这场竞争!Grok 3 声称是地球上最智能的 AI,人们对它的期望极高。根据 xAI 团队在发布会上公布的官方基准测试结果,它似乎是一个性能强大的模型,在多项基准测试中超越了所有竞争对手。但问题是,它是否真的适合我们日常生活中需要完成的普通任务呢?


读完这篇文章,你就会找到答案。让我们开始对 Grok 3 和 DeepSeek R1 进行五项不同任务的测试!





任务 1:Python 代码生成

提示:“编写一个 Python 函数,使用深度优先搜索生成随机迷宫,并通过 Matplotlib 进行可视化”


Grok 3 生成的代码:

import random
import numpy as np
import matplotlib.pyplot as plt

def generate_maze(width, height):
 """
 Generate a random maze using Depth-First Search and visualize it with Matplotlib.
 Parameters:
 width (int): Width of the maze (number of columns)
 height (int): Height of the maze (number of rows)
 """
 # Initialize the maze grid with walls (1) and paths (0)
 maze = np.ones((height * 2 + 1, width * 2 + 1), dtype=int)
 maze[1::2, 1::2] = 0 # Set paths (odd rows/columns) to 0
 def carve_path(x, y):
 """
 Recursively carve paths in the maze using DFS.
 """
 directions = [(0, 2), (2, 0), (-2, 0), (0, -2)] # Down, Right, Up, Left
 random.shuffle(directions)
 for dx, dy in directions:
 new_x, new_y = x + dx, y + dy
 if (0 <= new_x < height * 2 + 1 and
 0 <= new_y < width * 2 + 1 and
 maze[new_x, new_y] == 1):
 maze[new_x - dx // 2, new_y - dy // 2] = 0 # Remove wall
 maze[new_x, new_y] = 0 # Carve path
 carve_path(new_x, new_y)
 # Start carving from the top-left path (1,1)
 carve_path(1, 1)
 # Ensure entrance and exit are open (top-left and bottom-right paths)
 maze[0, 1] = 0 # Entrance
 maze[-1, -2] = 0 # Exit
 # Visualize the maze
 plt.figure(figsize=(width // 2, height // 2))
 plt.imshow(maze, cmap='binary', interpolation='nearest')
 plt.title("Random Maze Generated with DFS")
 plt.axis('off')
 plt.show()
 return maze

# Example usage
if __name__ == "__main__":
 # Generate a 10x10 maze (actual grid will be 21x21 due to walls)
 maze = generate_maze(10, 10)#import csv



DeepSeek R1 生成的代码:

import random
import matplotlib.pyplot as plt

def generate_maze(width, height):
 # Initialize the grid with walls (1)
 grid = [[1 for _ in range(width)] for _ in range(height)]
 # Starting point
 start_x, start_y = 1, 1
 grid[start_y][start_x] = 0
 # Stack for DFS
 stack = [(start_x, start_y)]
 # Directions: up, right, down, left
 directions = [(0, -2), (2, 0), (0, 2), (-2, 0)]
 while stack:
 x, y = stack[-1]
 random.shuffle(directions)
 for dx, dy in directions:
 nx, ny = x + dx, y + dy
 if 0 < nx < width - 1 and 0 < ny < height - 1 and grid[ny][nx] == 1:
 grid[ny][nx] = 0
 grid[y + dy // 2][x + dx // 2] = 0
 stack.append((nx, ny))
 break
 else:
 stack.pop()
 return grid

def plot_maze(grid):
 height = len(grid)
 width = len(grid[0])
 fig, ax = plt.subplots(figsize=(width, height))
 ax.set_xticks([])
 ax.set_yticks([])
 for y in range(height):
 for x in range(width):
 if grid[y][x] == 1:
 ax.add_patch(plt.Rectangle((x, height - y - 1), 1, 1, color='black'))
 ax.set_xlim(0, width)
 ax.set_ylim(0, height)
 ax.set_aspect('equal')
 plt.gca().invert_yaxis()
 plt.show()

# Parameters
maze_width = 21 # Should be odd
maze_height = 21 # Should be odd

# Generate and plot the maze
maze = generate_maze(maze_width, maze_height)
plot_maze(maze)#import csv



观察:

DeepSeek R1 的输出展示了一个清晰且结构良好的迷宫,看起来非常专业。其尖锐且一致的墙壁形成了一条封闭的迷宫路径,既具有挑战性,又在视觉上显得干净整洁。它遵循了良好的迷宫生成原则,既实用又美观。


相比之下,Grok 3 的输出显得非常像素化,由于厚重的黑白网格结构,路径不够清晰。整体设计显得更加混乱,与 DeepSeek R1 相比,路径不够明确。尽管它也使用了深度优先搜索(DFS)进行生成,但在视觉清晰度和可用性方面明显不如 DeepSeek R1,使其成为一个不太有效的迷宫表示。


结论:

Grok 3 ? | DeepSeek R1 ?


任务 2:网络搜索

由于 DeepSeek R1 不支持网络搜索,因此我使用了 DeepSeek 的搜索功能来完成这项任务。

提示:“截至 2025 年,核聚变技术的最新进展有哪些?输出格式——进展列表 + 来源”


观察:

在回答像核聚变技术进展这样的研究性问题时,DeepSeek R1 比 Grok 3 更出色。DeepSeek R1 的最大优势在于它为每个说法都提供了可点击的来源链接,确保了透明度和可信度。它涵盖了更广泛的进展,包括聚变燃料技术、私人投资、监管变化以及政府举措,使其回答更加全面。此外,其来源来自 ITER、UKAEA 和美国能源部等权威平台,显著提高了可信度。


相比之下,虽然 Grok 3 在解释深度上表现更好,但由于没有提供直接的来源链接,因此在可信度方面稍显不足。它模糊地引用了 BBC 新闻或 MIT 新闻等新闻媒体,但没有明确的引用。一个主要弱点是它依赖于 X(Twitter)上的帖子,这些帖子往往包含未经验证的说法。尽管 Grok 3 承认了这些局限性,但缺乏可靠的来源使其在事实性研究方面不太可靠。


结论:

Grok 3 ? | DeepSeek R1 ?



任务 3:使用 HTML 进行基础动画

提示: “创建一个 HTML + CSS 代码,让一个红色小球在一个正方形内持续旋转。”


Grok 3 输出:




 
 
 在正方形内旋转的红色小球
 


 


DeepSeek R1 输出:




 


 


输出:


观察:

显然,Grok 3 在理解提示并生成正确回答方面存在困难。DeepSeek R1 大约花费了 8 到 10 分钟才给出回答,但其输出更加精确和准确。


结论:

Grok 3 ? | DeepSeek R1 ?



任务 4:图像分析

提示:“分析这个棋盘局面。建议当前玩家(白方)的最佳走法以将死黑方,并解释理由”



观察:

Grok 3 和 DeepSeek R1 都没有给出正确答案。Grok 3 建议 e4-e5,但这并不能将死黑方或威胁到黑方的国王。DeepSeek R1 建议 Qe1#,但在这个局面中,这个走法是不可能的,说明它误解了棋盘位置。正确的走法是 Qf7#,此时白方的后可以通过困住黑方国王来实现将死。Grok 3 没有识别出立即的将死机会,而 DeepSeek R1 则错误地假设了棋盘布局,而不是分析实际的局面。


结论:

Grok 3 ? | DeepSeek R1 ?



任务 5:逻辑推理

提示:“解决这个斑马谜题。以表格形式给出答案”





观察:

DeepSeek R1 的回答虽然花费了更长时间,但给出了正确答案。Grok 3 没有理解图像内容,给出了错误的输出。


结论:

Grok 3 ? | DeepSeek R1 ?


Grok 3 与 DeepSeek R1:结果

埃隆·马斯克的 Grok 3 被宣传为 AI 领域的颠覆者,声称是地球上最智能的模型。然而,在实际测试中,它未能达到预期。


在多项任务中,Grok 3 在准确性、逻辑推理和复杂问题解决方面表现出色,常常给出错误或结构不佳的回答。与此同时,DeepSeek R1 一直表现更好,在代码生成、网络搜索和逻辑推理等关键领域提供了更准确、更有条理且可验证的答案。


尽管宣传力度很大,但 Grok 3 在基本推理任务上仍然存在不足,这表明 xAI 的训练方法需要进行重大改进。然而,考虑到马斯克在快速迭代和改进方面的记录,未来版本是否能够弥补这一差距将非常有趣。Grok 3 是否会成为其宣称的 AI 强国,还是会成为一个被过度炒作的实验?时间会给出答案。


#deepseek##grok##我的宝藏兴趣#

相关推荐

WPS 隐藏黑科技!OCT2HEX 函数用法全攻略,数据转换不再愁

WPS隐藏黑科技!OCT2HEX函数用法全攻略,数据转换不再愁在WPS表格的强大函数库中,OCT2HEX函数堪称数据进制转换的“魔法钥匙”。无论是程序员处理代码数据,还是工程师进行电路设计...

WPS 表格隐藏神器!LEFTB 函数让文本处理更高效

WPS表格隐藏神器!LEFTB函数让文本处理更高效在职场办公和日常数据处理中,WPS表格堪称我们的得力助手,而其中丰富多样的函数更是提升效率的关键。今天,要为大家介绍一个“宝藏函数”——LEF...

Java lombok 使用教程(lombok.jar idea)

简介Lombok是...

PART 48: 万能结果自定义,SWITCH函数!

公式解析SWITCH:根据值列表计算表达式并返回与第一个匹配值对应的结果。如果没有匹配项,则返回可选默认值用法解析1:评级=SWITCH(TRUE,C2>=90,"优秀",C2...

Excel 必备if函数使用方法详解(excel表if函数使用)

excel表格if函数使用方法介绍打开Excel,在想输出数据的单元格点击工具栏上的“公式”--“插入函数”--“IF”,然后点击确定。...

Jetty使用场景(jetty入门)

Jetty作为一款高性能、轻量级的嵌入式Web服务器和Servlet容器,其核心优势在于模块化设计、快速启动、低资源消耗...

【Java教程】基础语法到高级特性(java语言高级特性)

Java作为一门面向对象的编程语言,拥有清晰规范的语法体系。本文将系统性地介绍Java的核心语法特性,帮助开发者全面掌握Java编程基础。...

WPS里这个EVEN 函数,90%的人都没用过!

一、开篇引入在日常工作中,我们常常会与各种数据打交道。比如,在统计员工绩效时,需要对绩效分数进行一系列处理;在计算销售数据时,可能要对销售额进行特定的运算。这些看似简单的数据处理任务,实则隐藏着许多技...

64 AI助力Excel,查函数查用法简单方便

在excel表格当中接入ai之后会是一种什么样的使用体验?今天就跟大家一起来分享一下小程序商店的下一步重大的版本更新。下一个版本将会加入ai功能,接下来会跟大家演示一下基础的用法。ai功能规划的是有三...

python入门到脱坑 函数—函数的调用

Python函数调用详解函数调用是Python编程中最基础也是最重要的操作之一。下面我将详细介绍Python中函数调用的各种方式和注意事项。...

Excel自定义函数:满足特定需求的灵活工具

...

从简到繁,一文说清vlookup函数的常见用法

VLOOKUP函数是Excel中常用的查找与引用函数,用于在表格中按列查找数据。本文将从简单到复杂,逐步讲解VLOOKUP的用法、语法、应用场景及注意事项。一、VLOOKUP基础:快速入门1.什么是...

Java新特性:Lambda表达式(java lambda表达式的3种简写方式)

1、Lambda表达式概述1.1、Lambda表达式的简介Lambda表达式(Lambdaexpression),也可称为闭包(Closure),是Java(SE)8中一个重要的新特性。Lam...

WPS 冷门却超实用!ODD 函数用法大揭秘,轻松解决数据处理难题

WPS冷门却超实用!ODD函数用法大揭秘,轻松解决数据处理难题在WPS表格庞大的函数家族里,有一些函数虽然不像SUM、VLOOKUP那样广为人知,却在特定场景下能发挥出令人惊叹的作用,OD...

Python 函数式编程的 8 大核心技巧,不允许你还不会

函数式编程是一种强调使用纯函数、避免共享状态和可变数据的编程范式。Python虽然不是纯函数式语言,但提供了丰富的函数式编程特性。以下是Python函数式编程的8个核心技巧:...

取消回复欢迎 发表评论: