百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

用Python让图表动起来,居然这么简单

ztj100 2025-02-19 14:44 12 浏览 0 评论

我好像看到这个emoji:??动起来了!

编译:佑铭

参考:

https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1

用Matplotlib和Seaborn这类Python库可以画出很好看的图,但是这些图只是静态的,难以动态且美观地呈现数值变化。要是在你下次的演示、视频、社交媒体Po文里能用短视频呈现数据变化,是不是很赞呢?更棒的是,你还是可以在你的图表上用Matplotlib、Seaborn或者其他库!

本文将使用美国国家药物滥用研究所和疾病预防控制中心公布的阿片类药物数据,可在此处下载:

https://www.drugabuse.gov/sites/default/files/overdosedata1999-2015.xls

我们会用到的数据是这样的:

https://www.drugabuse.gov/sites/default/files/overdose_data_1999-2015.xls.

我们将用Matplotlib和Seaborn绘图,用Numpy和Pandas处理数据。Matplotlib也提供了一些我们做动画可以的函数,所以让我们首先导入所有依赖项。

  1. import numpy as np

  2. import pandas as pd

  3. import seaborn as sns

  4. import matplotlib

  5. import matplotlib.pyplot as plt

  6. import matplotlib.animation as animation

然后用Pandas载入数据并转成DataFrame类型的数据结构。因为我们要针对不同阿片类药物的滥用画图,写个函数来载入感兴趣的特定行的数据能避免重复代码。(小编注:原文提供的代码在读取excel文件的时候使用了已废弃的sheetname参数,本文中已修正为sheet_name)

  1. overdoses = pd.read_excel('overdose_data_1999-2015.xls',sheet_name='Online',skiprows =6)

  2. def get_data(table,rownum,title):

  3. data = pd.DataFrame(table.loc[rownum][2:]).astype(float)

  4. data.columns = {title}

  5. return data

现在让我们来做动画吧!

首先,如果你和我一样使用的是jupyter notebook,请在代码首行加入 %matplotlib notebook,如此便可在notebook直接看到生成的动画而非保存后才可见。

Python 环境搭建以及神器推荐,果断转走!

我现在使用 get_data函数从表中检索海洛因过量的数据并放在有两列的Pandas DataFrame中,一列是年,一列是过量死亡的人数。

  1. %matplotlib notebook

  2. title = 'Heroin Overdoses'

  3. d = get_data(overdoses,18,title)

  4. x = np.array(d.index)

  5. y = np.array(d['Heroin Overdoses'])

  6. overdose = pd.DataFrame(y,x)

  7. #XN,YN = augment(x,y,10)

  8. #augmented = pd.DataFrame(YN,XN)

  9. overdose.columns = {title}

接下来我们初始化一个ffmpeg Writer并以20帧每秒、1800比特率进行录屏。你也可以根据喜好自行设置这些值。

  1. Writer = animation.writers['ffmpeg']

  2. writer = Writer(fps=20, metadata=dict(artist='Me'), bitrate=1800)

(小编注:如果出现
RuntimeError:RequestedMovieWriter(ffmpeg)notavailable
的报错,请自行安装ffmpeg,装了brew的Mac可以直接:brew install ffmpeg

现在我们创建一个有几个标签的图形。确保设置x和y轴的限制,以免动画随当前显示的数据范围乱跳转。

  1. fig = plt.figure(figsize=(10,6))

  2. plt.xlim(1999, 2016)

  3. plt.ylim(np.min(overdose)[0], np.max(overdose)[0])

  4. plt.xlabel('Year',fontsize=20)

  5. plt.ylabel(title,fontsize=20)

  6. plt.title('Heroin Overdoses per Year',fontsize=20)

动画的核心是动画函数,你可以在其中定义视频的每一帧发生什么。这里的 i表示动画中帧的索引。使用这个索引可以选择应在此帧中可见的数据范围。然后我使用seaborn线图来绘制所选的数据。最后两行代码只是为了让图表更美观。

  1. def animate(i):

  2. data = overdose.iloc[:int(i+1)] #选择数据范围

  3. p = sns.lineplot(x=data.index, y=data[title], data=data, color="r")

  4. p.tick_params(labelsize=17)

  5. plt.setp(p.lines,linewidth=7)

我们用调用了 animate函数并定义了帧数的
matplotlib.animation.FuncAnimation
来开始动画,frames实际上定义了调用animate的频率。

  1. ani = matplotlib.animation.FuncAnimation(fig, animate, frames=17, repeat=True)

你可以用 ani.save把动画保存为mp4,如果你想直接看一看动画效果可以用plt.show

  1. ani.save('HeroinOverdosesJumpy.mp4', writer=writer)

现在我们的图表动起来啦:

动画能够正常运行但是感觉有点跳跃,所以我们需要在已有数据点之间增加更多的数据点来使动画的过渡平滑。于是我们使用另一个函数 augment

  1. def augment(xold,yold,numsteps):

  2. xnew =

  3. ynew =

  4. for i in range(len(xold)-1):

  5. difX = xold[i+1]-xold[i]

  6. stepsX = difX/numsteps

  7. difY = yold[i+1]-yold[i]

  8. stepsY = difY/numsteps

  9. for s in range(numsteps):

  10. xnew = np.append(xnew,xold[i]+s*stepsX)

  11. ynew = np.append(ynew,yold[i]+s*stepsY)

  12. return xnew,ynew

现在我们只需要对我们的数据应用这个函数、增加
matplotlib.animation.FuncAnimation
函数的帧数。在这里我用参数numsteps=10调用augment函数,也就是增加数据点至160个,并且设置frames=160。这样以来,图表显得更为平滑,但还是在数值变动处有些突兀。

为了让我们的动画更平滑美观,我们可以增加一个平滑函数(具体请见:
https://www.swharden.com/wp/2008-11-17-linear-data-smoothing-in-python/ )。

  1. def smoothListGaussian(listin,strippedXs=False,degree=5):

  2. window=degree*2-1

  3. weight=np.array([1.0]*window)

  4. weightGauss=

  5. for i in range(window):

  6. i=i-degree+1

  7. frac=i/float(window)

  8. gauss=1/(np.exp((4*(frac))**2))

  9. weightGauss.append(gauss)

  10. weight=np.array(weightGauss)*weight

  11. smoothed=[0.0]*(len(listin)-window)

  12. for i in range(len(smoothed)): smoothed[i]=sum(np.array(listin[i:i+window])*weight)/sum(weight)

  13. return smoothed

另外我们也可以加上一点颜色和样式参数,让图表更个性化。

  1. sns.set(rc={'axes.facecolor':'lightgrey', 'figure.facecolor':'lightgrey','figure.edgecolor':'black','axes.grid':False})

当当当!如此我们便得到了文章开头的动画图表。

这篇文章仅仅只是matplotlib动画功能的一个例子,你大可以用它来实现任何一种图表的动画效果。简单调整 animate函数内的参数和图表类型,就能得到无穷无尽的可能性。

(完)

相关推荐

Vue3非兼容变更——函数式组件(vue 兼容)

在Vue2.X中,函数式组件有两个主要应用场景:作为性能优化,因为它们的初始化速度比有状态组件快得多;返回多个根节点。然而在Vue3.X中,有状态组件的性能已经提高到可以忽略不计的程度。此外,有状态组...

利用vue.js进行组件化开发,一学就会(一)

组件原理/组成组件(Component)扩展HTML元素,封装可重用的代码,核心目标是为了可重用性高,减少重复性的开发。组件预先定义好行为的ViewModel类。代码按照template\styl...

Vue3 新趋势:10 个最强 X 操作!(vue.3)

Vue3为前端开发带来了诸多革新,它不仅提升了性能,还提供了...

总结 Vue3 组件管理 12 种高级写法,灵活使用才能提高效率

SFC单文件组件顾名思义,就是一个.vue文件只写一个组件...

前端流行框架Vue3教程:17. _组件数据传递

_组件数据传递我们之前讲解过了组件之间的数据传递,...

前端流行框架Vue3教程:14. 组件传递Props效验

组件传递Props效验Vue组件可以更细致地声明对传入的props的校验要求...

前端流行框架Vue3教程:25. 组件保持存活

25.组件保持存活当使用...

5 个被低估的 Vue3 实战技巧,让你的项目性能提升 300%?

前端圈最近都在卷性能优化和工程化,你还在用老一套的Vue3开发方法?作为摸爬滚打多年的老前端,今天就把私藏的几个Vue3实战技巧分享出来,帮你在开发效率、代码质量和项目性能上实现弯道超车!一、...

绝望!Vue3 组件频繁崩溃?7 个硬核技巧让性能暴涨 400%!

前端的兄弟姐妹们五一假期快乐,谁还没在Vue3项目上栽过跟头?满心欢喜写好的组件,一到实际场景就频频崩溃,页面加载慢得像蜗牛,操作卡顿到让人想砸电脑。用户疯狂吐槽,领导脸色难看,自己改代码改到怀疑...

前端流行框架Vue3教程:15. 组件事件

组件事件在组件的模板表达式中,可以直接使用...

Vue3,看这篇就够了(vue3 从入门到实战)

一、前言最近很多技术网站,讨论的最多的无非就是Vue3了,大多数都是CompositionAPI和基于Proxy的原理分析。但是今天想着跟大家聊聊,Vue3对于一个低代码平台的前端更深层次意味着什么...

前端流行框架Vue3教程:24.动态组件

24.动态组件有些场景会需要在两个组件间来回切换,比如Tab界面...

前端流行框架Vue3教程:12. 组件的注册方式

组件的注册方式一个Vue组件在使用前需要先被“注册”,这样Vue才能在渲染模板时找到其对应的实现。组件注册有两种方式:全局注册和局部注册...

焦虑!Vue3 组件频繁假死?6 个奇招让页面流畅度狂飙 500%!

前端圈的朋友们,谁还没在Vue3项目上踩过性能的坑?满心期待开发出的组件,一到高并发场景就频繁假死,用户反馈页面点不动,产品经理追着问进度,自己调试到心态炸裂!别以为这是个例,不少人在电商大促、数...

前端流行框架Vue3教程:26. 异步组件

根据上节课的代码,我们在切换到B组件的时候,发现并没有网络请求:异步组件:...

取消回复欢迎 发表评论: