百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

NumPy快速入门手册_numpy视频教程

ztj100 2025-02-19 14:44 8 浏览 0 评论

NumPy(Numerical Python)是Python语言的一个扩充程序库,Numpy、Pandas和Matplotlib并称数据分析三剑客。numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

ndarray类

??NumPy中的数组类被称为ndarray,要注意的是numpy.array与Python标准库中的array.array是不同的。ndarray具有如下比较重要的属性:

ndarray.ndim

??ndarray.ndim表示数组的维度。

ndarray.shape

??ndarray.shape是一个整型tuple,用来表示数组中的每个维度的大小。例如,对于一个n行和m列的矩阵,其shape为(n,m)。

ndarray.size

??ndarray.size表示数组中元素的个数,其值等于shape中所有整数的乘积。

ndarray.dtype

??ndarray.dtype用来描述数组中元素的类型,ndarray中的所有元素都必须是同一种类型,如果在构造数组时,传入的参数不是同一类型的,不同的类型将进行统一转化。除了标准的Python类型外,NumPy额外提供了一些自有的类型,如numpy.int32numpy.int16以及numpy.float64等。

ndarray.itemsize

??ndarray.itemsize用于表示数组中每个元素的字节大小。

代码示例:
>>> import numpy as np
>>> a = np.arange(15).reshape(3,5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.dtype
dtype('int64')
>>> a.size
15
>>> a.itemsize
8
>>> type(a)

>>> 
>>> b = np.array([1,2,3,4,5,6,7,8,9])
>>> b
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> c = np.array([1,2,3,4,5,6,'7','a','b'])
>>> c
array(['1', '2', '3', '4', '5', '6', '7', 'a', 'b'], dtype='>> type(b)

>>> type(c)

>>> c.dtype
dtype('>> b.dtype
dtype('int64')
>>> c.itemsize
84
>>> b.itemsize
8

数组创建

??NumPy中创建数组的方式有若干种。最简单的,可以直接利用Python中常规的listtuple进行创建。

>>> import numpy as np
>>> a = np.array([1,2,3,4,5,6])
>>> b = np.array((1,2,3,4,5,6))
>>> a
array([1, 2, 3, 4, 5, 6])
>>> b
array([1, 2, 3, 4, 5, 6])

??这里需要注意传入的参数,下面的第一种方式是错误的:

>>> a = np.array(1,2,3,4)    # WRONG
Traceback (most recent call last):
  File "", line 1, in 
ValueError: only 2 non-keyword arguments accepted
>>> a = np.array([1,2,3,4])  # RIGHT

??另外,传入的参数必须是同一结构,不是同一结构将发生转换。

>>> import numpy as np
>>> a = np.array([1,2,3.5])
>>> a
array([1. , 2. , 3.5])
>>> b = np.array([1,2,3])
>>> b
array([1, 2, 3])
>>> c = np.array(['1',2,3])
>>> c
array(['1', '2', '3'], dtype='>> 

??另外,array还可以将序列的序列转换成二位数组,可以将序列的序列的序列转换成三维数组,以此类推。

>>> import numpy as np
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
       [2, 3, 4]])
>>> b = np.array([[1,2,3],[2,3,4],[3,4,5]])
>>> b
array([[1, 2, 3],
       [2, 3, 4],
       [3, 4, 5]])
>>> 

??另外,创建数组的时候,可以明确的规定数组的类型。

>>> c = np.array([1,2,3], dtype = complex)
>>> c
array([1.+0.j, 2.+0.j, 3.+0.j])
>>> d = np.array([[1,2,3],[4,5,6]], dtype = '>> d
array([['1', '2', '3'],
       ['4', '5', '6']], dtype='>> 

??另外,NumPy还提供了便捷地创建特定数组的方式。

>>> import numpy as np
>>> a = np.zeros((3,4))
>>> a
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])
>>> b = np.zeros((2,2,2))
>>> b
array([[[0., 0.],
        [0., 0.]],

       [[0., 0.],
        [0., 0.]]])
>>> c = np.ones((3,3))
>>> c
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])
>>> d = np.ones((3,3), dtype = np.int16)
>>> d
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]], dtype=int16)
>>> e = np.arange(15)
>>> e
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])
>>> f = np.arange(15).reshape(3,5)
>>> f
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> g = np.arange(0,15,3)
>>> g
array([ 0,  3,  6,  9, 12])
>>> h = np.arange(0,3,0.3)
>>> h
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7])

>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)

基本操作

??对数组中的算术操作是元素对应(elementwise)的,例如,对两个数组进行加减乘除,其结果是对两个数组对一个位置上的数进行加减乘除,数组算术操作的结果会存放在一个新建的数组中。

>>> import numpy as np
>>> a = np.array([10,20,30,40])
>>> b = np.arange(4)
>>> a
array([10, 20, 30, 40])
>>> b
array([0, 1, 2, 3])
>>> c = a - b
>>> c
array([10, 19, 28, 37])
>>> a
array([10, 20, 30, 40])
>>> b
array([0, 1, 2, 3])
>>> b**2
array([0, 1, 4, 9])
>>> b
array([0, 1, 2, 3])
>>> a<35
array([ True,  True,  True, False])
>>> a
array([10, 20, 30, 40])

??在NumPy中,*用于数组间元素对应的乘法,而不是矩阵乘法,矩阵乘法可以用dot()方法来实现。

>>> A = np.array([[1,2],[3,4]])
>>> B = np.array([[0,1],[0,1]])
>>> A
array([[1, 2],
       [3, 4]])
>>> B
array([[0, 1],
       [0, 1]])
>>> A*B                    # elementwise product
array([[0, 2],
       [0, 4]])
>>> A.dot(B)               # matrix product
array([[0, 3],
       [0, 7]])
>>> np.dot(A,B)            # another matrix product
array([[0, 3],
       [0, 7]])

??有些操作,如*=+=-=/=等操作,会直接改变需要操作的数组,而不是创建一个新的数组。

>>> a = np.ones((2,3), dtype = int)
>>> a
array([[1, 1, 1],
       [1, 1, 1]])
>>> b = np.random.random((2,3))
>>> b
array([[0.27020018, 0.16904478, 0.29618462],
       [0.45432616, 0.99311013, 0.56769309]])
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += 3
>>> b
array([[3.27020018, 3.16904478, 3.29618462],
       [3.45432616, 3.99311013, 3.56769309]])
>>> b += a
>>> b
array([[6.27020018, 6.16904478, 6.29618462],
       [6.45432616, 6.99311013, 6.56769309]])
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> a += b              # b is not automatically converted to integer type
Traceback (most recent call last):
  File "", line 1, in 
TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
>>> 

??当操作不同类型的数组时,最终的结果数组的类型取决于精度最宽的数组的类型。(即所谓的向上造型)

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
'float64'
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
'complex128'

??ndarray类实现了许多操作数组的一元方法,如求和、求最大值、求最小值等。

>>> a = np.random.random((2,3))
>>> a
array([[0.62181697, 0.26165654, 0.34994938],
       [0.95619296, 0.24614291, 0.42120462]])
>>> a.sum()
2.8569633678947346
>>> a.min()
0.24614290611891454
>>> a.max()
0.9561929625193091
>>> 

??除了上述一元方法以外,NumPy还提供了操作数组中特定行和列的一元方法,通过制定不同的axis来实现。

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> b.sum(axis = 0)                   # sum of each column
array([12, 15, 18, 21])
>>> b.sum(axis = 1)                   # sum of each row
array([ 6, 22, 38])
>>> b.min(axis = 0)                   # min of each column
array([0, 1, 2, 3])
>>> b.min(axis = 1)                   # min of each row
array([0, 4, 8])
>>> b.max(axis = 0)                   # max of each column
array([ 8,  9, 10, 11])
>>> b.max(axis = 1)                   # max of each row
array([ 3,  7, 11])
>>> b.cumsum(axis = 1)                # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
>>> b.cumsum(axis = 0)                # cumulative sum along each column
array([[ 0,  1,  2,  3],
       [ 4,  6,  8, 10],
       [12, 15, 18, 21]])
>>> 

通用方法

??NumPy提供了大量的通用数学和算术方法,比如常见的sincos、具体可以参考如下:

all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor, inner, inv, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var, vdot, vectorize, where

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

数组索引和迭代

??与Python中定义的list一样,NumPy支持一维数组的索引、切片和迭代。

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[3]
27
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1111
>>> a
array([-1111,     1, -1111,    27, -1111,   125,   216,   343,   512,
         729])
>>> a[::-1]
array([  729,   512,   343,   216,   125, -1111,    27, -1111,     1,
       -1111])

??多维数组与一维数组相似,其在每个轴上都有一个对应的索引(index),这些索引是在一个逗号分隔的元组(tuple)中给出的。

>>> b = np.arange(15).reshape(3,5)
>>> b
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> b[2,3]
13
>>> b[3,3]
Traceback (most recent call last):
  File "", line 1, in 
IndexError: index 3 is out of bounds for axis 0 with size 3
>>> b[0,0]
0
>>> b[0,4]
4
>>> 
>>> 
>>> b[:, 1]
array([ 1,  6, 11])
>>> b[1, :]
array([5, 6, 7, 8, 9])
>>> b[-1]
array([10, 11, 12, 13, 14])
>>> b.shape
(3, 5)

??这里需要注意的是,数组的第一个索引是从0开始的。一维数组和多维数组的迭代,可以参考如下示例:

>>> for row in b:
...     print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

>>> for element in b.flat:
...     print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43

??其中flat属性是array中的每个元素的迭代器。

shape操作

1. 改变数组的shape

??Numpy中数组shape由每个轴上元素的个数决定的。例如:

>>> import numpy as np
>>> a = np.ones((3,4), dtype = int)
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> a.shape
(3, 4)

??NumPy中数组的shape是可以通过多种方式进行改变的,下面展示三种改变数组shape而不改变当前数组的方法,这三种方法返回一个特定shape的数组,但是并不改变原来的数组:

>>> import numpy as np
>>> a = np.ones((3,4), dtype = int)
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> a.ravel()
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> b = a.ravel()
>>> b
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> c = a.reshape(2,-1)
>>> c
array([[1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1]])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> a.T
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> d = a.T
>>> d
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]])
>>> a.shape
(3, 4)
>>> b.shape
(12,)
>>> c.shape
(2, 6)
>>> d.shape
(4, 3)

??除此之外,NumPy还提供了可以直接修改原始数组shape的方法——resize()resize()方法和reshape()方法的最主要区别在于,reshape()方法返回一个特定shape的数组,而resize()方法会直接更改原数组。

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> a.resize(2,6)
>>> a
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11]])

2. 数组堆叠和切片

??NumPy支持将多个数据按照不同的轴进行堆叠:

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[0., 8.],
       [4., 8.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[1., 4.],
       [4., 1.]])
>>> np.vstack((a,b))
array([[0., 8.],
       [4., 8.],
       [1., 4.],
       [4., 1.]])
>>> np.hstack((a,b))
array([[0., 8., 1., 4.],
       [4., 8., 4., 1.]])

??hstack()实现数组横向堆叠,vstack()实现数组纵向堆叠。

>>> from numpy import newaxis
>>> np.column_stack((a,b))
array([[4, 2],
       [2, 8]])
>>> a[:, newaxis]
array([[4],
       [2]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[4, 2],
       [2, 8]])
>>> np.vstack((a[:,newaxis],b[:,newaxis]))
array([[4],
       [2],
       [2],
       [8]])

>>> np.r_[1:4,0,4]
array([1, 2, 3, 0, 4])

??除了支持数组的横向和纵向堆叠之外,NumPy还支持数组的横向和纵向分割,示例如下:

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> np.split(a,3)
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
>>> np.h
np.half(         np.hanning(      np.histogram(    np.histogramdd(  np.hstack(       
np.hamming(      np.heaviside(    np.histogram2d(  np.hsplit(       np.hypot(        
>>> np.hsplit(a,4)
[array([[0],
       [4],
       [8]]), array([[1],
       [5],
       [9]]), array([[ 2],
       [ 6],
       [10]]), array([[ 3],
       [ 7],
       [11]])]
>>> np.vsplit(a,3)
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
>>> 

??其中,split()方法默认为横线分割。

复制和视图

??NumPy中,数组的复制有三种方式:

Python通用的地址复制:通过 b = a 复制 a 的值,b 与 a 指向同一地址,改变 b 同时也改变 a。通过视图ndarray.view()仅复制值,当对 c 值进行改变会改变 a 的对应的值,而改变 c 的 shape 不改变 a 的 shapendarray.copy() 进行的完整的拷贝,产生一份完全相同的独立的复制。

>>> a = np.arange(12)
>>> a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> b = a
>>> print(a is b)
True
>>> 
>>> 
>>> c = a.view()
>>> c
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> print(a is c)
False
>>> c.shape = 2,6
>>> c
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11]])
>>> c[0,0] = 111
>>> c
array([[111,   1,   2,   3,   4,   5],
       [  6,   7,   8,   9,  10,  11]])
>>> a
array([111,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11])
>>> 
>>> 
>>> d = a.copy()
>>> print(a is d)
False
>>> d.shape = 2,6
>>> d
array([[111,   1,   2,   3,   4,   5],
       [  6,   7,   8,   9,  10,  11]])
>>> a
array([111,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11])
>>> d[0,0] = 999
>>> d
array([[ 999,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11]])
>>> a
array([111,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11])
>>> 

NumPy功能和方法预览

数组创建

arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros, zeros_like

数组转换

ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat

操作

array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take, transpose, vsplit, vstack

问题

all, any, nonzero, where

排列

argmax, argmin, argsort, max, min, ptp, searchsorted, sort

运算

choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum

基础统计

cov, mean, std, var

基本线性代数

cross, dot, outer, linalg.svd, vdot

相关推荐

告别手动操作:一键多工作表合并的实用方法

通常情况下,我们需要将同一工作簿内不同工作表中的数据进行合并处理。如何快速有效地完成这些数据的整合呢?这主要取决于需要合并的源数据的结构。...

【MySQL技术专题】「优化技术系列」常用SQL的优化方案和技术思路

概述前面我们介绍了MySQL中怎么样通过索引来优化查询。日常开发中,除了使用查询外,我们还会使用一些其他的常用SQL,比如INSERT、GROUPBY等。对于这些SQL语句,我们该怎么样进行优化呢...

9.7寸视网膜屏原道M9i双系统安装教程

泡泡网平板电脑频道4月17日原道M9i采用Win8安卓双系统,对于喜欢折腾的朋友来说,刷机成了一件难事,那么原道M9i如何刷机呢?下面通过详细地图文,介绍原道M9i的刷机操作过程,在刷机的过程中,要...

如何做好分布式任务调度——Scheduler 的一些探索

作者:张宇轩,章逸,曾丹初识Scheduler找准定位:分布式任务调度平台...

mysqldump备份操作大全及相关参数详解

mysqldump简介mysqldump是用于转储MySQL数据库的实用程序,通常我们用来迁移和备份数据库;它自带的功能参数非常多,文中列举出几乎所有常用的导出操作方法,在文章末尾将所有的参数详细说明...

大厂面试冲刺,Java“实战”问题三连,你碰到了哪个?

推荐学习...

亿级分库分表,如何丝滑扩容、如何双写灰度

以下是基于亿级分库分表丝滑扩容与双写灰度设计方案,结合架构图与核心流程说明:一、总体设计目标...

MYSQL表设计规范(mysql表设计原则)

日常工作总结,不是通用规范一、表设计库名、表名、字段名必须使用小写字母,“_”分割。...

怎么解决MySQL中的Duplicate entry错误?

在使用MySQL数据库时,我们经常会遇到Duplicateentry错误,这是由于插入或更新数据时出现了重复的唯一键值。这种错误可能会导致数据的不一致性和完整性问题。为了解决这个问题,我们可以采取以...

高并发下如何防重?(高并发如何防止重复)

前言最近测试给我提了一个bug,说我之前提供的一个批量复制商品的接口,产生了重复的商品数据。...

性能压测数据告诉你MySQL和MariaDB该怎么选

1.压测环境为了尽可能的客观公正,本次选择同一物理机上的两台虚拟机,一台用作数据库服务器,一台用作运行压测工具mysqlslap,操作系统均为UbuntuServer22.04LTS。...

屠龙之技 --sql注入 不值得浪费超过十天 实战中sqlmap--lv 3通杀全国

MySQL小结发表于2020-09-21分类于知识整理阅读次数:本文字数:67k阅读时长≈1:01...

破防了,谁懂啊家人们:记一次 mysql 问题排查

作者:温粥一、前言谁懂啊家人们,作为一名java开发,原来以为mysql这东西,写写CRUD,不是有手就行吗;你说DDL啊,不就是设计个表结构,搞几个索引吗。...

SpringBoot系列Mybatis之批量插入的几种姿势

...

MySQL 之 Performance Schema(mysql安装及配置超详细教程)

MySQL之PerformanceSchema介绍PerformanceSchema提供了在数据库运行时实时检查MySQL服务器的内部执行情况的方法,通过监视MySQL服务器的事件来实现监视内...

取消回复欢迎 发表评论: