百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

「Python+Pandas」自动化处理Excel的“分分合合”,非常实用

ztj100 2025-02-18 14:24 13 浏览 0 评论

话说Excel数据表,分久必合、合久必分。Excel数据表的“分”与“合”是日常办公中常见的操作。手动操作并不困难,但数据量大了之后,重复性操作往往会令人崩溃。利用Python的Pandas库,便可以自动实现Excel数据表的“分分合合”。下面结合实例来分享一些整理的实用代码片段。

分:纵向“分”

从数据平台(如问卷平台)中导出的数据往往是清单型的,每一行都是一条记录,数据量大的时候,表格往往是很“长”的。有时需要按照某列的不同数值,将一个总表“分”成单独的一些Excel文件。

一个工作表“分”为多个Excel文件

def to_excelByColName(sourceDf,colName,outPath,excelName):
    '''
        纵向“分”:一个工作表“分”为多个Excel文件
        根据指定的列名中的不同值,分解Excel,并存储成多个Excel文件。
        sourceDf:原始的DataFrame
        colName:指定列名
        outPath:输出路径
        excelName:文件名,加.xlsx后缀
    '''
    colNameList = sourceDf[colName].drop_duplicates().tolist()
    for eachColName in colNameList:
        sourceDf[sourceDf[colName]==eachColName].to_excel('/'.join([outPath,eachColName+excelName]),index=False)

例如:将20个班级1000名学生的总表,按班级分成20个Excel文件。

调用 to_excelByColName 函数,效果如下:

to_excelByColName(sourceDf = sourceDf,colName="班级",outPath=".\分班数据表",excelName="生成数据表.xlsx")

一个工作表“分”为一个文件的多个sheet

def to_excelByColNameWithSheets(sourceDf,colName,outPath):
    '''
        纵向“分”:一个工作表“分”为一个文件的多个sheet
        根据指定的列名中的不同值,分解Excel,并存储成单个Excel文件的多个Sheet。
        sourceDf:原始的DataFrame
        colName:指定列名
        outPath:输出路径,加.xlsx后缀
    '''
    writer = pd.ExcelWriter(outPath)
    colNameList = sourceDf[colName].drop_duplicates().tolist()
    for eachColName in colNameList:
        sourceDf[sourceDf[colName]==eachColName].to_excel(writer,sheet_name=eachColName)
    writer.save()

例如:将20个班级1000名学生的总表,按班级分成1个Excel文件的20个sheet表。

调用
to_excelByColNameWithSheets
函数,效果如下:

to_excelByColNameWithSheets(sourceDf = sourceDf,colName="班级",outPath=".\分班数据表\生成数据表.xlsx")

分:横向“分”

在处理数据的时候,有时需要添加多个辅助列,这样也会让数据表越来越“宽”。而最终我们只需要某些关键列即可,那么这就涉及到横向数据分割,或者说提取某些列保持成一个单独的数据表。横向的分割只需要给DataFrame传入列名列表即可。

例如:只需要数据表中的姓名和班级字段,可以这样写。

df1 = sourceDf[["姓名","班级"]]
df1.to_excel("只含有姓名和班级的数据表.xlsx")

合:纵向“合”

对于结构相同的数据,在数据处理时可以将其在纵向上拼接,方便一起处理。

多个Excel文件合并成一个工作表

def readExcelFilesByNames(fpath,fileNameList=[],header=0):
    '''
        纵向“合”:多个Excel文件合并成一个工作表
        读取路径下指定的Excel文件,并合并成一个总的DataFrame。
        每个Excel文件的数据表格式上要一致。
        1.fpath:必填,是Excel文件所在路径,不加文件名
        2.fileNameList:需要读取的Excel文件名列表
        3.header:指定读取的行数
    '''
    outdf = pd.DataFrame()
    for fileName in fileNameList:
        tempdf =pd.read_excel('/'.join([fpath,fileName]),header = header)
        outdf = pd.concat([outdf,tempdf])
    return outdf

例如:将20个班级的Excel文件,合并成一个数据表

调用 readExcelFilesByNames 函数,效果如下:

fileNameList = [
    "六1班数据表.xlsx",    "六2班数据表.xlsx",    "六3班数据表.xlsx",    "六4班数据表.xlsx",
    "六5班数据表.xlsx",    "六6班数据表.xlsx",    "六7班数据表.xlsx",    "六8班数据表.xlsx",
    "六9班数据表.xlsx",    "六10班数据表.xlsx",    "六11班数据表.xlsx",    "六12班数据表.xlsx",
    "六13班数据表.xlsx",    "六14班数据表.xlsx",    "六15班数据表.xlsx",    "六16班数据表.xlsx",
    "六17班数据表.xlsx",    "六18班数据表.xlsx",    "六19班数据表.xlsx",    "六20班数据表.xlsx",
]
readExcelFilesByNames(fpath = ".\分班数据表",fileNameList=fileNameList)

多个Sheet合并成一个工作表

def readExcelBySheetsNames(fpath,header = 0,prefixStr = "",sheetNameStr ="sheetName",prefixNumStr = "prefixNum"):
    '''
        纵向“合”:多个Sheet合并成一个工作表
        读取所有的Excel文件的sheet,并合并返回一个总的DataFrame。
        每个sheet的数据表格式上要一致。
        1.fpath:必填,是Excel文件的路径,加文件名
        2.会生成两个新列:sheetName和prefixNum,方便数据处理
            sheetName列是所有sheet的名称列
            prefixNum列是计数列
        3.header:指定读取的行数
    '''
    xl = pd.ExcelFile(fpath)
    # 获取Excel文件内的所有的sheet名称
    sheetNameList = xl.sheet_names
    outfd = pd.DataFrame()
    num  = 0 
    for sheetName in sheetNameList:
        num += 1
        data = xl.parse(sheetName,header=header)
        # 产生sheet名称列和计数列
        data[sheetNameStr] = sheetName
        data[prefixNumStr] = prefixStr +str(num)
        # 数据表拼接
        outfd = pd.concat([outfd,data.dropna()])
    xl.close()
    return outfd

如下调用 readExcelBySheetsNames ,运行效果如下:

readExcelBySheetsNames(fpath = ".\分班数据表\总数据表.xlsx",sheetNameStr ="sheet名",prefixNumStr = "sheet序号")

合:横向“合”

对于不同Excel工作表之间的横向合并,主要是用根据某些列(如:姓名、身份证号等)进行合并。在pandas库中可以用 merge 方法来实现,这是个十分好用的方式,展开讲篇幅较长,后续详细整理。

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

结语

本文所谈的Python处理Excel文件方式主要是基于 pandas 库的,主要针对的是 清单型的数据表

数据表的 主要涉及的是文件保存(写入),对程序员来说属于 输出 环节;

数据表的 主要针对的是文件打开(读取),对程序而言属于 输入 环节。

以上代码在针对大量重复性的表格分与合时,优势巨大;但对于偶尔、少量的分与合,也许用鼠标点击更快。

原文链接:
https://www.cnblogs.com/wansq/p/15923443.html

相关推荐

告别手动操作:一键多工作表合并的实用方法

通常情况下,我们需要将同一工作簿内不同工作表中的数据进行合并处理。如何快速有效地完成这些数据的整合呢?这主要取决于需要合并的源数据的结构。...

【MySQL技术专题】「优化技术系列」常用SQL的优化方案和技术思路

概述前面我们介绍了MySQL中怎么样通过索引来优化查询。日常开发中,除了使用查询外,我们还会使用一些其他的常用SQL,比如INSERT、GROUPBY等。对于这些SQL语句,我们该怎么样进行优化呢...

9.7寸视网膜屏原道M9i双系统安装教程

泡泡网平板电脑频道4月17日原道M9i采用Win8安卓双系统,对于喜欢折腾的朋友来说,刷机成了一件难事,那么原道M9i如何刷机呢?下面通过详细地图文,介绍原道M9i的刷机操作过程,在刷机的过程中,要...

如何做好分布式任务调度——Scheduler 的一些探索

作者:张宇轩,章逸,曾丹初识Scheduler找准定位:分布式任务调度平台...

mysqldump备份操作大全及相关参数详解

mysqldump简介mysqldump是用于转储MySQL数据库的实用程序,通常我们用来迁移和备份数据库;它自带的功能参数非常多,文中列举出几乎所有常用的导出操作方法,在文章末尾将所有的参数详细说明...

大厂面试冲刺,Java“实战”问题三连,你碰到了哪个?

推荐学习...

亿级分库分表,如何丝滑扩容、如何双写灰度

以下是基于亿级分库分表丝滑扩容与双写灰度设计方案,结合架构图与核心流程说明:一、总体设计目标...

MYSQL表设计规范(mysql表设计原则)

日常工作总结,不是通用规范一、表设计库名、表名、字段名必须使用小写字母,“_”分割。...

怎么解决MySQL中的Duplicate entry错误?

在使用MySQL数据库时,我们经常会遇到Duplicateentry错误,这是由于插入或更新数据时出现了重复的唯一键值。这种错误可能会导致数据的不一致性和完整性问题。为了解决这个问题,我们可以采取以...

高并发下如何防重?(高并发如何防止重复)

前言最近测试给我提了一个bug,说我之前提供的一个批量复制商品的接口,产生了重复的商品数据。...

性能压测数据告诉你MySQL和MariaDB该怎么选

1.压测环境为了尽可能的客观公正,本次选择同一物理机上的两台虚拟机,一台用作数据库服务器,一台用作运行压测工具mysqlslap,操作系统均为UbuntuServer22.04LTS。...

屠龙之技 --sql注入 不值得浪费超过十天 实战中sqlmap--lv 3通杀全国

MySQL小结发表于2020-09-21分类于知识整理阅读次数:本文字数:67k阅读时长≈1:01...

破防了,谁懂啊家人们:记一次 mysql 问题排查

作者:温粥一、前言谁懂啊家人们,作为一名java开发,原来以为mysql这东西,写写CRUD,不是有手就行吗;你说DDL啊,不就是设计个表结构,搞几个索引吗。...

SpringBoot系列Mybatis之批量插入的几种姿势

...

MySQL 之 Performance Schema(mysql安装及配置超详细教程)

MySQL之PerformanceSchema介绍PerformanceSchema提供了在数据库运行时实时检查MySQL服务器的内部执行情况的方法,通过监视MySQL服务器的事件来实现监视内...

取消回复欢迎 发表评论: