Python数据分析 只要1分钟 教你玩转JSON 全程干货
ztj100 2025-01-12 20:22 23 浏览 0 评论
Json 简介:
Json,全名 JavaScript Object Notation,JSON(JavaScript Object Notation(记号、标记))是一种轻量级的数据交换格式。它基于JavaScript(Standard ECMA-262 3rd Edition - December 1999)的一个子集。 (文末有惊喜)
JSON采用完全独立 于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。JSON易于人阅读和编写,同时也易于机器解析和生成。常用于 http 请求中,接口
数据类型
用Python处理json也很简单,Python自带有json模块。可以对python对象与json字符串进行相互转换。
python的常见内置数据类型有dict,tuple等,而在json中,数据类型有object,array等,在相互转换中,类型是一一对应的。在下表中的python数据类型才可以被转为json,集合set、字节byte不能转为json。
Python数据类型 | JSON数据类型 | 说明 |
dict | object | 都用花括号{}表示 |
list,tuple | array | JSON用中括号[]表示 |
str | string | JSON用双引号""表示 |
int,float | number | |
True | true | |
False | false | |
None | null |
json模块的主要4个函数。
方法 | 解释 |
json.dumps | 解析python对象为json字符串 |
json.dump | 解析python对象,输出到json文件 |
json.loads | 解析json字符串为python对象 |
json.load | 输入json文件,解析为python对象 |
json.dumps
json.dumps方法提供了很多好用的参数可供选择,比较常用的有sort_keys(对dict对象进行排序,我们知道默认dict是无序存放的),skipkeys(对于键不是基本类型Python字典键值对将被过滤),indent(格式化输出用的)等参数。还是举个例子:
>> python_obj2={"key2": [4, 5, 6], "key1": [1, 2, 3]}
>>> json_str2=json.dumps(python_obj2)
>>> json_str2=json.dumps(python_obj2,sort_keys=True,indent=2)
>>> print json_str2
{
"key1": [
>> python_obj2={"key2": [4, 5, 6], "key1": [1, 2, 3]}
>>> json_str2=json.dumps(python_obj2)
>>> json_str2=json.dumps(python_obj2,sort_keys=True,indent=2)
>>> print json_str2
{
"key1": [
1,
2,
3
],
"key2": [
4,
5,
6
]
}
>>> json_str2=json.dumps(python_obj2,sort_keys=False,indent=2)
>>> print json_str2
{
"key2": [
4,
5,
6
],
"key1": [
1,
2,
3
]
}
在python中解析python对象为json字符串,使用json.dumps方法。其中indent参数表示缩进,可以优化json输出格式。
yimport json
# 创建python list对象
obj = [{'a': 1, 'b': {'aa': 11, 'bb': 22}}, {'b': (False,True,None)}]
# 解析python对象,设置缩进
print(json.dumps(obj,indent=4))
[
{
"a": 1,
"b": {
"aa": 11,
"bb": 22
}
},
{
"b": [
false,
true,
null
]
}
]
注意点:
- python字符的单引号被转为双引号
- 关键字False,True,None对应被转为false,true,null
- 元组被转为数组
- 解析后的json本质是字符串
在实际的项目开发中,使用到的python对象可能不止内置的对象,还有可能使用如numpy,pandas,datetime等高频使用的库。如下,将numpy的int32类型的1转为json,发现报错TypeError: Object of type int32 is not JSON serializable,这种类型的报错在python对象转json过程中是非常常见的,报错解释是输入的类型不能序列化。
# 解析python对象,会报错
json.dumps(np.int32(1))
Traceback (most recent call last):
File "<input>", line 1, in <module>
File "C:\Anaconda3\lib\json\__init__.py", line 231, in dumps
return _default_encoder.encode(obj)
File "C:\Anaconda3\lib\json\encoder.py", line 199, in encode
chunks = self.iterencode(o, _one_shot=True)
File "C:\Anaconda3\lib\json\encoder.py", line 257, in iterencode
return _iterencode(o, 0)
File "C:\Anaconda3\lib\json\encoder.py", line 179, in default
raise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type int32 is not JSON serializable
该类问题的解决办法有两种,一是在数据源处做类型强制转换,如可以用内置的int方法把numpy的int32转为int。
# 解析python对象,强制类型转换
json.dumps(int(np.int32(1)))
'1'
另外一种方法更为灵活(推荐),设置json.dumps参数cls,cls参数输入为类,可以重写jsoneEncoder类中的default方法。
# 自定义类
class MyEncoder(json.JSONEncoder):
"""
重写json模块JSONEncoder类中的default方法
"""
def default(self, obj):
# np整数转为内置int
if isinstance(obj, np.integer):
return int(obj)
else:
return super(JetEncoder, self).default(obj)
# 解析python对象,设置cls参数
json.dumps(np.int32(1),cls=MyEncoder)
'1'
第二种方法灵活性更好,可以根据项目情况自定义需要转换的类型,当有多个地方需要转换时,通用性更好。
json.dump
json.dump用于保存python对象为json文件。obj.json文件中会保存解析obj后的json字符串。
# python list对象
print(obj)
[{'a': 1, 'b': {'aa': 11, 'bb': 22}}, {'b': (False, True, None)}]
# 解析python对象并输出到json文件
with open('obj.json','w') as f:
json.dump(obj,f)
json.loads
json.loads用于加载json字符串,然后解析成python对象。
json_str='{"a":1,"b":{"aa":11,"bb":22}}'
# 解析json字符串为python对象
json.loads(json_str)
{'a': 1, 'b': {'aa': 11, 'bb': 22}}
json.load
json.load用于加载json文件,然后解析成python对象。
# 解析python对象,输出到json文件
with open('obj.json','r') as f:
print(json.load(f))
[{'a': 1, 'b': {'aa': 11, 'bb': 22}}, {'b': [False, True, None]}]
需要下面的资料的,还有更多课件资源的,请私信我“666”领取!!!
私信我还有更多惊喜哦!!!
相关推荐
- 其实TensorFlow真的很水无非就这30篇熬夜练
-
好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...
- 交叉验证和超参数调整:如何优化你的机器学习模型
-
准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...
- 机器学习交叉验证全指南:原理、类型与实战技巧
-
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...
- 深度学习中的类别激活热图可视化
-
作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 机器学习入门教程-第六课:监督学习与非监督学习
-
1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...
- Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置
-
你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...
- 神经网络与传统统计方法的简单对比
-
传统的统计方法如...
- 自回归滞后模型进行多变量时间序列预测
-
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...
- 苹果AI策略:慢哲学——科技行业的“长期主义”试金石
-
苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...
- 时间序列预测全攻略,6大模型代码实操
-
如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)