百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

PyFlink 教程(三):PyFlink DataStream API - state & timer

ztj100 2025-01-09 17:29 28 浏览 0 评论

简介: 介绍如何在 Python DataStream API 中使用 state & timer 功能。

一、背景

Flink 1.13 已于近期正式发布,超过 200 名贡献者参与了 Flink 1.13 的开发,提交了超过 1000 个 commits,完成了若干重要功能。其中,PyFlink 模块在该版本中也新增了若干重要功能,比如支持了 state、自定义 window、row-based operation 等。随着这些功能的引入,PyFlink 功能已经日趋完善,用户可以使用 Python 语言完成绝大多数类型Flink作业的开发。接下来,我们详细介绍如何在 Python DataStream API 中使用 state & timer 功能。

二、state 功能介绍

作为流计算引擎,state 是 Flink 中最核心的功能之一。

  • 在 1.12 中,Python DataStream API 尚不支持 state,用户使用 Python DataStream API 只能实现一些简单的、不需要使用 state 的应用;
  • 而在 1.13 中,Python DataStream API 支持了此项重要功能。

state 使用示例

如下是一个简单的示例,说明如何在 Python DataStream API 作业中使用 state:

from pyflink.common import WatermarkStrategy, Row
from pyflink.common.typeinfo import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.connectors import NumberSequenceSource
from pyflink.datastream.functions import RuntimeContext, MapFunction
from pyflink.datastream.state import ValueStateDescriptor


class MyMapFunction(MapFunction):

    def open(self, runtime_context: RuntimeContext):
        state_desc = ValueStateDescriptor('cnt', Types.LONG())
        # 定义value state
        self.cnt_state = runtime_context.get_state(state_desc)

    def map(self, value):
        cnt = self.cnt_state.value()
        if cnt is None:
            cnt = 0

        new_cnt = cnt + 1
        self.cnt_state.update(new_cnt)
        return value[0], new_cnt


def state_access_demo():
    # 1. 创建 StreamExecutionEnvironment
    env = StreamExecutionEnvironment.get_execution_environment()

    # 2. 创建数据源
    seq_num_source = NumberSequenceSource(1, 100)
    ds = env.from_source(
        source=seq_num_source,
        watermark_strategy=WatermarkStrategy.for_monotonous_timestamps(),
        source_name='seq_num_source',
        type_info=Types.LONG())

    # 3. 定义执行逻辑
    ds = ds.map(lambda a: Row(a % 4, 1), output_type=Types.ROW([Types.LONG(), Types.LONG()])) \
           .key_by(lambda a: a[0]) \
           .map(MyMapFunction(), output_type=Types.TUPLE([Types.LONG(), Types.LONG()]))

    # 4. 将打印结果数据
    ds.print()

    # 5. 执行作业
    env.execute()


if __name__ == '__main__':
    state_access_demo()

在上面的例子中,我们定义了一个 MapFunction,该 MapFunction 中定义了一个名字为 “cnt_state” 的 ValueState,用于记录每一个 key 出现的次数。

说明:

  • 除了 ValueState 之外,Python DataStream API 还支持 ListState、MapState、ReducingState,以及 AggregatingState;
  • 定义 state 的 StateDescriptor 时,需要声明 state 中所存储的数据的类型(TypeInformation)。另外需要注意的是,当前 TypeInformation 字段并未被使用,默认使用 pickle 进行序列化,因此建议将 TypeInformation 字段定义为 Types.PICKLED_BYTE_ARRAY() 类型,与实际所使用的序列化器相匹配。这样的话,当后续版本支持使用 TypeInformation 之后,可以保持后向兼容性;
  • state 除了可以在 KeyedStream 的 map 操作中使用,还可以在其它操作中使用;除此之外,还可以在连接流中使用 state,比如:
ds1 = ...  # type DataStream
ds2 = ...  # type DataStream
ds1.connect(ds2) \
    .key_by(key_selector1=lambda a: a[0], key_selector2=lambda a: a[0]) \
    .map(MyCoMapFunction())  # 可以在MyCoMapFunction中使用state

可以使用 state 的 API 列表如下:


操作

自定义函数

KeyedStream

map

MapFunction

flat_map

FlatMapFunction


reduce

ReduceFunction


filter

FilterFunction


process

KeyedProcessFunction


ConnectedStreams

map

CoMapFunction

flat_map

CoFlatMapFunction


process

KeyedCoProcessFunction


WindowedStream

apply

WindowFunction


process

ProcessWindowFunction

state 工作原理

上图是 PyFlink 中,state 工作原理的架构图。从图中我们可以看出,Python 自定义函数运行在 Python worker 进程中,而 state backend 运行在 JVM 进程中(由 Java 算子来管理)。当 Python 自定义函数需要访问 state 时,会通过远程调用的方式,访问 state backend。

我们知道,远程调用的开销是非常大的,为了提升 state 读写的性能,PyFlink 针对 state 读写做了以下几个方面的优化工作:

  • Lazy Read:对于包含多个 entry 的 state,比如 MapState,当遍历 state 时,state 数据并不会一次性全部读取到 Python worker 中,只有当真正需要访问时,才从 state backend 读取。
  • Async Write:当更新 state 时,更新后的 state,会先存储在 LRU cache 中,并不会同步地更新到远端的 state backend,这样做可以避免每次 state 更新操作都访问远端的 state backend;同时,针对同一个 key 的多次更新操作,可以合并执行,尽量避免无效的 state 更新。
  • LRU cache:在 Python worker 进程中维护了 state 读写的 cache。当读取某个 key 时,会先查看其是否已经被加载到读 cache 中;当更新某个 key 时,会先将其存放到写 cache 中。针对频繁读写的 key,LRU cache 可以避免每次读写操作,都访问远端的 state backend,对于有热点 key 的场景,可以极大提升 state 读写性能。
  • Flush on Checkpoint:为了保证 checkpoint 语义的正确性,当 Java 算子需要执行 checkpoint时,会将 Python worker中的写 cache 都 flush 回 state backend。

其中 LRU cache 可以细分为二级,如下图所示:

说明:

  • 二级 cache 为 global cache,二级 cache 中的读 cache 中存储着当前 Python worker 进程中所有缓存的原始 state 数据(未反序列化);二级 cache 中的写 cache 中存储着当前 Python worker 进程中所有创建的 state 对象。
  • 一级 cache 位于每一个 state 对象内,在 state 对象中缓存着该 state 对象已经从远端的 state backend 读取的 state 数据以及待更新回远端的 state backend 的 state 数据。

工作流程:

  • 当在 Python UDF 中,创建一个 state 对象时,首先会查看当前 key 所对应的 state 对象是否已经存在(在二级 cache 中的 “Global Write Cache” 中查找),如果存在,则返回对应的 state 对象;如果不存在,则创建新的 state 对象,并存入 “Global Write Cache”;
  • state 读取:当在 Python UDF 中,读取 state 对象时,如果待读取的 state 数据已经存在(一级 cache),比如对于 MapState,待读取的 map key/map value 已经存在,则直接返回对应的 map key/map value;否则,访问二级 cache,如果二级 cache 中也不存在待读取的 state 数据,则从远端的 state backend 读取;
  • state 写入:当在 Python UDF 中,更新 state 对象时,先写到 state 对象内部的写 cache 中(一级 cache);当 state 对象中待写回 state backend 的 state 数据的大小超过指定阈值或者当遇到 checkpoint 时,将待写回的 state 数据写回远端的 state backend。

state 性能调优

通过前一节的介绍,我们知道 PyFlink 使用了多种优化手段,用于提升 state 读写的性能,这些优化行为可以通过以下参数配置:

配置

说明

python.state.cache-size

Python worker 中读 cache 以及写 cache 的大小。(二级 cache)需要注意的是:读 cache、写 cache是独立的,当前不支持分别配置读 cache 以及写 cache 的大小。

python.map-state.iterate-response-batch-size

当遍历 MapState 时,每次从 state backend 读取并返回给 Python worker 的 entry 的最大个数。

python.map-state.read-cache-size

一个 MapState 的读 cache 中最大允许的 entry 个数(一级 cache)。当一个 MapState 中,读 cache 中的 entry 个数超过该阈值时,会通过 LRU 策略从读 cache 中删除最近最少访问过的 entry。

python.map-state.write-cache-size

一个 MapState 的写 cache 中最大允许的待更新 entry 的个数(一级 cache)。当一个 MapState 中,写 cache 中待更新的 entry 的个数超过该阈值时,会将该 MapState 下所有待更新 state 数据写回远端的 state backend。

需要注意的是,state 读写的性能不仅取决于以上参数,还受其它因素的影响,比如:

  • 输入数据中 key 的分布:输入数据的 key 越分散,读 cache 命中的概率越低,则性能越差。
  • Python UDF 中 state 读写次数:state 读写可能涉及到读写远端的 state backend,应该尽量优化 Python UDF 的实现,减少不必要的 state 读写。
  • checkpoint interval:为了保证 checkpoint 语义的正确性,当遇到 checkpoint 时,Python worker 会将所有缓存的待更新 state 数据,写回 state backend。如果配置的 checkpoint interval 过小,则可能并不能有效减少 Python worker 写回 state backend 的数据量。
  • bundle size / bundle time:当前 Python 算子会将输入数据划分成多个批次,发送给 Python worker 执行。当一个批次的数据处理完之后,会强制将 Python worker 进程中的待更新 state 写回 state backend。与 checkpoint interval 类似,该行为也可能会影响 state 写性能。批次的大小可以通过 python.fn-execution.bundle.size 和 python.fn-execution.bundle.time 参数控制。

三、timer 功能介绍

timer 使用示例

除了 state 之外,用户还可以在 Python DataStream API 中使用定时器 timer。

import datetime

from pyflink.common import Row, WatermarkStrategy
from pyflink.common.typeinfo import Types
from pyflink.common.watermark_strategy import TimestampAssigner
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.functions import KeyedProcessFunction, RuntimeContext
from pyflink.datastream.state import ValueStateDescriptor
from pyflink.table import StreamTableEnvironment


class CountWithTimeoutFunction(KeyedProcessFunction):

    def __init__(self):
        self.state = None

    def open(self, runtime_context: RuntimeContext):
        self.state = runtime_context.get_state(ValueStateDescriptor(
            "my_state", Types.ROW([Types.STRING(), Types.LONG(), Types.LONG()])))

    def process_element(self, value, ctx: 'KeyedProcessFunction.Context'):
        # retrieve the current count
        current = self.state.value()
        if current is None:
            current = Row(value.f1, 0, 0)

        # update the state's count
        current[1] += 1

        # set the state's timestamp to the record's assigned event time timestamp
        current[2] = ctx.timestamp()

        # write the state back
        self.state.update(current)

        # schedule the next timer 60 seconds from the current event time
        ctx.timer_service().register_event_time_timer(current[2] + 60000)

    def on_timer(self, timestamp: int, ctx: 'KeyedProcessFunction.OnTimerContext'):
        # get the state for the key that scheduled the timer
        result = self.state.value()

        # check if this is an outdated timer or the latest timer
        if timestamp == result[2] + 60000:
            # emit the state on timeout
            yield result[0], result[1]


class MyTimestampAssigner(TimestampAssigner):

    def __init__(self):
        self.epoch = datetime.datetime.utcfromtimestamp(0)

    def extract_timestamp(self, value, record_timestamp) -> int:
        return int((value[0] - self.epoch).total_seconds() * 1000)


if __name__ == '__main__':
    env = StreamExecutionEnvironment.get_execution_environment()
    t_env = StreamTableEnvironment.create(stream_execution_environment=env)

    t_env.execute_sql("""
            CREATE TABLE my_source (
              a TIMESTAMP(3),
              b VARCHAR,
              c VARCHAR
            ) WITH (
              'connector' = 'datagen',
              'rows-per-second' = '10'
            )
        """)

    stream = t_env.to_append_stream(
        t_env.from_path('my_source'),
        Types.ROW([Types.SQL_TIMESTAMP(), Types.STRING(), Types.STRING()]))
    watermarked_stream = stream.assign_timestamps_and_watermarks(
        WatermarkStrategy.for_monotonous_timestamps()
                         .with_timestamp_assigner(MyTimestampAssigner()))

    # apply the process function onto a keyed stream
    watermarked_stream.key_by(lambda value: value[1])\
        .process(CountWithTimeoutFunction()) \
        .print()

    env.execute()

在上述示例中,我们定义了一个 KeyedProcessFunction,该 KeyedProcessFunction 记录每一个 key 出现的次数,当一个 key 超过 60 秒没有更新时,会将该 key 以及其出现次数,发送到下游节点。

除了 event time timer 之外,用户还可以使用 processing time timer。

timer 工作原理

timer 的工作流程是这样的:

  • 与 state 访问使用单独的通信信道不同,当用户注册 timer 之后,注册消息通过数据通道发送到 Java 算子;
  • Java 算子收到 timer 注册消息之后,首先检查待注册 timer 的触发时间,如果已经超过当前时间,则直接触发;否则的话,将 timer 注册到 Java 算子的 timer service 中;
  • 当 timer 触发之后,触发消息通过数据通道发送到 Python worker,Python worker 回调用户 Python UDF 中的的 on_timer 方法。

需要注意的是:由于 timer 注册消息以及触发消息通过数据通道异步地在 Java 算子以及 Python worker 之间传输,这会造成在某些场景下,timer 的触发可能没有那么及时。比如当用户注册了一个 processing time timer,当 timer 触发之后,触发消息通过数据通道传输到 Python UDF 时,可能已经是几秒中之后了。

四、总结

在这篇文章中,我们主要介绍了如何在 Python DataStream API 作业中使用 state & timer,state & timer 的工作原理以及如何进行性能调优。接下来,我们会继续推出 PyFlink 系列文章,帮助 PyFlink 用户深入了解 PyFlink 中各种功能、应用场景以及最佳实践等。

本文为阿里云原创内容,未经允许不得转载。

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: