这次,彻底懂了 这次,我懂了作文
ztj100 2024-12-18 18:19 25 浏览 0 评论
在构建深度神经网络时,尤其是使用Keras等更高级框架构建时,我们常常不了解每一层中到底发生了什么事情。
时序模型确实可以带给我们更多的帮助,但是当需要做一些更复杂或更有趣的事情时,就需要深入研究细节。
在本文中,我将通过PyTorch的示例来详细解释当通过LSTM层传递一批数据时经历了什么。希望这可以帮助你了解该层的机制,并允许让你更加充分利用它们,而无需花费大量时间去盲目调试未知错误,例如:
本文重点是讲解LSTM层发生的事情,对于一些基础知识,例如梯度消失等无法全面概括。如果对这部分知识有疑惑,可以自行查阅文献深入研究一下。
数据
任何LSTM层的输入都是三维张量,如下所示:
t_0到t_6代表“窗口”:这可以是句子的长度,也可以是时间序列中的一个窗口;v_1至v_6代表“特征”:如果是单变量时间序列,则只有v1;如果您使用嵌入,则v_1至v_N代表嵌入,其中N为嵌入尺寸;对于多维时间序列,每个v代表一个特征;上面的图像代表一个“批次”:将值的时间序列重新排列为窗口大小的特征批次;
例如,1000个样本、6个特征:[1000, 6],如果窗口大小为6,则为[1000, 6, 6]。
如果我们想象一个时间序列,那么这个过程看起来像这样:
这是数据,接下来,沿着网络层继续探索。
实现和探索LSTM
相对于Keras这些更为高级的框架,PyTorch具有更强的灵活性,这里,通过PyTorch实现一个最原始的LSTM,不加入任何嵌入和复杂操作。为了了解LSTM在做什么,我们需要从头到尾“追踪”我们的Tensor。
这意味着了解批处理中每个张量发生的变换,直到最终输出(或预测)为止。
术语
单元(cell)是LSTM单位(请参见下图)。因为Tensorflow使用num_units来指定每个单元中隐藏状态的大小,所以,这里有些混乱。
对于LSTM中的每一层,单元数等于窗口的大小。
使用上面的示例,单元数为6。
第一步是将每个观察结果按时间间隔送入到到我们的单元中。
每个单元都用一个单元状态初始化, 还有一个隐藏状态需要初始化。
然后,每个单元格都传递一个隐藏状态,并将该单元格状态传递到下一个单元格(循环)。
t_n-1的隐藏状态与t_n处的观察状态连接在一起。
每个像元的输出是大小为(1,n_hidden)的张量。
因此,对于每个观察,我们得到大小为(window_size,n_hidden)的输出,对于每个批次,我们得到大小为(batch_size,window_size,n_hidden)的输出。
我们通常采用最后一个单元的输出:
示例
为了更加清晰的认识LSTM,本文用Python代码结合PyTorch框架实现了最原始的LSTM,这样有助于大家的理解。
import torch
from torch import nn
from torch.autograd import Variable
class SimpleLSTM(nn.Module):
"""implements a 'simple' lstm - a single/multilayer uni/bi directional lstm with a single output"""
def __init__(self, n_features, window_size,
output_size, h_size, n_layers=1,
bidirectional=False, device=torch.device('cpu')):
super().__init__()
self.n_features = n_features
self.window_size = window_size
self.output_size = output_size
self.h_size = h_size
self.n_layers = n_layers
self.directions = 2if bidirectional else1
self.device = device
# our layer of interest
self.lstm = nn.LSTM(input_size=n_features, hidden_size=h_size,
num_layers=n_layers, bidirectional=bidirectional, batch_first=True)
self.hidden = None
self.linear = nn.Linear(self.h_size * self.directions, self.output_size)
def init_hidden(self, batch_size):
hidden_state = torch.randn(self.n_layers * self.directions,
batch_size ,self.h_size).to(self.device)
cell_state = torch.randn(self.n_layers * self.directions,
batch_size,self.h_size).to(self.device)
hidden_state = Variable(hidden_state)
cell_state = Variable(cell_state)
return (hidden_state, cell_state)
def forward(self, input):
batch_size = list(input.size())[0]
self.hidden = self.init_hidden(batch_size)
lstm_output, self.hidden = self.lstm(input, self.hidden)
last_hidden_states = torch.index_select(lstm_output, 1, index=torch.LongTensor(([self.window_size-1])))
predictions = self.linear(last_hidden_states)
return predictions
model = VanillaLSTM(n_features=23, window_size=6, output_size=1, h_size=256)
data = torch.rand((100,6, 23))
print(model.forward(data).shape)
上述就是利用Python代码重述了一下前面所讲的LSTM实现过程。
结合代码与前面的讲解来进行学习,能够帮助大家更加轻松的认识LSTM的原理。
往期精选
太酷了!一款强大的机器学习可视化IDE
太好用!教你几招Python魔法方法的妙用
GitHub万赞!这个神仙资源一定能够让你的Python技能更上一层楼
福利
最近我花费了半个月的时间,整理了1份理论+实践的计算机视觉入门教程,这或许是你见过最好的一份CV教程之一。独家打造、完全免费,需要的同学可以扫码添加我的个人微信,发送“CV”获取~
相关推荐
- Java项目宝塔搭建实战MES-Springboot开源MES智能制造系统源码
-
大家好啊,我是测评君,欢迎来到web测评。...
- 一个令人头秃的问题,Logback 日志级别设置竟然无效?
-
原文链接:https://mp.weixin.qq.com/s/EFvbFwetmXXA9ZGBGswUsQ原作者:小黑十一点半...
- 实战!SpringBoot + RabbitMQ死信队列实现超时关单
-
需求背景之为什么要有超时关单原因一:...
- 火了!阿里P8架构师编写堪称神级SpringBoot手册,GitHub星标99+
-
Springboot现在已成为企业面试中必备的知识点,以及企业应用的重要模块。今天小编给大家分享一份来着阿里P8架构师编写的...
- Java本地搭建宝塔部署实战springboot仓库管理系统源码
-
大家好啊,我是测评君,欢迎来到web测评。...
- 工具尝鲜(1)-Fleet构建运行一个Springboot入门Web项目
-
Fleet是JetBrains公司推出的轻量级编辑器,对标VSCode。该款产品还在公测当中,具体下载链接如下JetBrainsFleet:由JetBrains打造的下一代IDE。想要尝试的...
- SPRINGBOOT WEB 实现文件夹上传(保留目录结构)
-
网上搜到的SpringBoot的代码不多,完整的不多,能用的也不多,基本上大部分的文章只是提供了少量的代码,讲一下思路,或者实现方案。之前一般的做法都是使用HTML5来做的,大部都是传文件的,传文件夹...
- Java项目本地部署宝塔搭建实战报修小程序springboot版系统源码
-
大家好啊,我是测评君,欢迎来到web测评。...
- 新年IT界大笑料“工行取得基于SpringBoot的web系统后端实现专利
-
先看看专利描述...
- 看完SpringBoot源码后,整个人都精神了
-
前言当读完SpringBoot源码后,被Spring的设计者们折服,Spring系列中没有几行代码是我们看不懂的,而是难在理解设计思路,阅读Spring、SpringMVC、SpringBoot需要花...
- 阿里大牛再爆神著:SpringBoot+Cloud微服务手册
-
今天给大家分享的这份“Springboot+Springcloud微服务开发实战手册”共有以下三大特点...
- WebClient是什么?SpringBoot中如何使用WebClient?
-
WebClient是什么?WebClient是SpringFramework5引入的一个非阻塞、响应式的Web客户端库。它提供了一种简单而强大的方式来进行HTTP请求,并处理来自服务器的响应。与传...
- SpringBoot系列——基于mui的H5套壳APP开发web框架
-
前言 大致原理:创建一个main主页面,只有主页面有头部、尾部,中间内容嵌入iframe内容子页面,如果在当前页面进行跳转操作,也是在iframe中进行跳转,而如果点击尾部按钮切换模块、页面,那...
- 在Spring Boot中使用 jose4j 实现 JSON Web Token (JWT)
-
JSONWebToken或JWT作为服务之间安全通信的一种方式而闻名。...
- Spring Boot使用AOP方式实现统一的Web请求日志记录?
-
AOP简介AOP(AspectOrientedProgramming),面相切面编程,是通过代码预编译与运行时动态代理的方式来实现程序的统一功能维护的方案。AOP作为Spring框架的核心内容,通...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Java项目宝塔搭建实战MES-Springboot开源MES智能制造系统源码
- 一个令人头秃的问题,Logback 日志级别设置竟然无效?
- 实战!SpringBoot + RabbitMQ死信队列实现超时关单
- 火了!阿里P8架构师编写堪称神级SpringBoot手册,GitHub星标99+
- Java本地搭建宝塔部署实战springboot仓库管理系统源码
- 工具尝鲜(1)-Fleet构建运行一个Springboot入门Web项目
- SPRINGBOOT WEB 实现文件夹上传(保留目录结构)
- Java项目本地部署宝塔搭建实战报修小程序springboot版系统源码
- 新年IT界大笑料“工行取得基于SpringBoot的web系统后端实现专利
- 看完SpringBoot源码后,整个人都精神了
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)