百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

循环神经网络的使用RNN和LSTM rnn循环神经网络实例

ztj100 2024-12-18 18:19 20 浏览 0 评论

专栏推荐




(此处已添加圈子卡片,请到今日头条客户端查看)

RNN

ht = tαnh(Wih*Xt+bih+whh*ht-1+bhh)

在pytorch中我们使用nn.RNN()就可以创建出RNN神经网络,它有如下参数:

input_size表示输入xt的特征维度

hidden_size表示输出ht的特征维度,或者理解为隐藏层的神经元数

num_layers表示RNN网络的层数,默认是1层

nonlinearity表示非线性激活函数的选择,默认tanh,当然也可以选择relu

bias表示是否使用偏置,默认是Ture,使用

batch_first这个参数是决定网络输入的维度顺序,默认是(seq,batch,feature)输入,seq表示序列长度,batch表示批量,feature表示特征维度,我们也可以将其修改为(batch,seq,feature),只用将这个参数设置为True

dropout个参数接受一个0~1的数值,这个dropout层会在除了最后一层之外的其他输出层加上

bidirectional默认的False,如果我们要是使用双向循环网络的话,那么我们就可以设置这个参数是True

以上就是使用nn.RNN()的一些使用参数

当我们创建好一个RNN网络之后,我们要出入到神经网络数据,神经网络会接收一个序列输入xt,还有一个记忆输入h0,这个记忆输入的维度是(lαyers * direction, batch, hidde),其中layers表示RNN的层数,direction表示RNN的方向,如果双向就是2,如果单向那么就是1,batch表示批量,hidden表示输出维度,还有一点隐藏网络记忆输出的维度也是(lαyers * direction, batch, hidden)

RNN的输出维度是(seq,batch, hidden * diredion),

建立输入维度是20,输出维度是50,两层层的单项RNN网络

Rnn=nn.RNN(input_size=20,hidden_size=50,num_layers=2)

输入20,可以简单的理解为一个RNN模块的输入层的神经元数是20

输出50,可以简单的理解为一个RNN模块的输出层的神经元数是50,也可以理解为隐藏层为50个神经元

Wih为(50*20)

Whh为(50*50)

当我们创建这样的神经网络的时候,我们就可以往这个网络中输入数据了,但要注意维度

因为创建网络的时候,已经指定了input_size=30了,所以我们输入的feature也应该是30,假如输入的维度xt是100,32,20,这个表示序列长度是100,也就是一个样本的长度,有32个样本,然后样本中的每个词的维度是32

然后还可以指定h0的维度2 , 32 , 50。,2表示层数*方向数。32表示样本数,50表示隐藏层的维数。如果在传入网络的时候不特别注明隐藏状态问,那么初始的隐藏状态默认参数全 是 0

input = Variable(torch.randn(100,32,20))

h0 = Variable (torch. randn (2 , 32 , 50))

将数据输入到网络中

output,hn=RNN(input,h0)

此时output的维度是100,32,50,50是输出层的神经元个数

此时hn的维度是2 , 32 , 50

LSTM

LSTM中的维度是普通RNN的四倍,可以理解为wih的维度为(50x4, 20)它的隐藏状态除了h0以外,还多了一个C0它们合在一起成为网络的隐藏状态,而且它们的大小完全一样,就是 (1αyer * direction, batch, hidden),

lstm=nn.LSTM(input_size=20,hidden_size=50,num_layers=2)

创建一个lstm神经网络,它的输入层的神经元是20,输出层的神经元数是50,层数是2层

input = Variable(torch.randn(100,32,20))

out, (hn, cn) = lstm(input)

out100,32,50

hn2,32,50

cn2,32,50

GRU号LSTM相似,先它的隐藏状态参数不再是标准 RNNrr叫的 4 倍,而是 3 倍,可以理解为wih的维度为(50x3,20),而且此时网络的隐藏状态也不在是h0和c0,而只有h0.

相关推荐

Java项目宝塔搭建实战MES-Springboot开源MES智能制造系统源码

大家好啊,我是测评君,欢迎来到web测评。...

一个令人头秃的问题,Logback 日志级别设置竟然无效?

原文链接:https://mp.weixin.qq.com/s/EFvbFwetmXXA9ZGBGswUsQ原作者:小黑十一点半...

实战!SpringBoot + RabbitMQ死信队列实现超时关单

需求背景之为什么要有超时关单原因一:...

火了!阿里P8架构师编写堪称神级SpringBoot手册,GitHub星标99+

Springboot现在已成为企业面试中必备的知识点,以及企业应用的重要模块。今天小编给大家分享一份来着阿里P8架构师编写的...

Java本地搭建宝塔部署实战springboot仓库管理系统源码

大家好啊,我是测评君,欢迎来到web测评。...

工具尝鲜(1)-Fleet构建运行一个Springboot入门Web项目

Fleet是JetBrains公司推出的轻量级编辑器,对标VSCode。该款产品还在公测当中,具体下载链接如下JetBrainsFleet:由JetBrains打造的下一代IDE。想要尝试的...

SPRINGBOOT WEB 实现文件夹上传(保留目录结构)

网上搜到的SpringBoot的代码不多,完整的不多,能用的也不多,基本上大部分的文章只是提供了少量的代码,讲一下思路,或者实现方案。之前一般的做法都是使用HTML5来做的,大部都是传文件的,传文件夹...

Java项目本地部署宝塔搭建实战报修小程序springboot版系统源码

大家好啊,我是测评君,欢迎来到web测评。...

新年IT界大笑料“工行取得基于SpringBoot的web系统后端实现专利

先看看专利描述...

看完SpringBoot源码后,整个人都精神了

前言当读完SpringBoot源码后,被Spring的设计者们折服,Spring系列中没有几行代码是我们看不懂的,而是难在理解设计思路,阅读Spring、SpringMVC、SpringBoot需要花...

阿里大牛再爆神著:SpringBoot+Cloud微服务手册

今天给大家分享的这份“Springboot+Springcloud微服务开发实战手册”共有以下三大特点...

WebClient是什么?SpringBoot中如何使用WebClient?

WebClient是什么?WebClient是SpringFramework5引入的一个非阻塞、响应式的Web客户端库。它提供了一种简单而强大的方式来进行HTTP请求,并处理来自服务器的响应。与传...

SpringBoot系列——基于mui的H5套壳APP开发web框架

  前言  大致原理:创建一个main主页面,只有主页面有头部、尾部,中间内容嵌入iframe内容子页面,如果在当前页面进行跳转操作,也是在iframe中进行跳转,而如果点击尾部按钮切换模块、页面,那...

在Spring Boot中使用 jose4j 实现 JSON Web Token (JWT)

JSONWebToken或JWT作为服务之间安全通信的一种方式而闻名。...

Spring Boot使用AOP方式实现统一的Web请求日志记录?

AOP简介AOP(AspectOrientedProgramming),面相切面编程,是通过代码预编译与运行时动态代理的方式来实现程序的统一功能维护的方案。AOP作为Spring框架的核心内容,通...

取消回复欢迎 发表评论: