神经网络-LeNet 神经网络概念股
ztj100 2024-12-17 17:49 46 浏览 0 评论
LeNet在1990年被提出,是一系列网络的统称,包括了LeNet1~LeNet5,对于神经网络的学习者来说,大家对下面这个图一定很熟悉,该图是对LeNet的简化展示。
在LeNet中已经提出了卷积层、Pooling层等概念,只是但是由于缺乏大量数据和计算机硬件资源限制,导致LeNet的表现并不理想。
LeNet网络结构
LeNet的构成很简单,包括了基础的卷积层、池化层和全连接层,原始的LeNet使用的是灰度图像,下面示例中使用彩色图像进行说明,不影响网络的理解。
- 定义网络层
# 定义网络
class LeNet(nn.Module): #继承来着nn.Module的父类
def __init__(self):
# 初始化网络
#super()继承父类的构造函数,多继承需用到super函数
super(LeNet, self).__init__()
# 定义卷积层,[深度,卷积核数,卷积核大小]
self.conv1 = nn.Conv2d(3, 16, 5)
# 最大池化,[核大小,步长]
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.pool2 = nn.MaxPool2d(2, 2)
# 全连接层
self.fc1 = nn.Linear(32*5*5, 120)
self.fc2 = nn.Linear(120, 84)
# 根据训练项目,调整类别数
self.fc3 = nn.Linear(84, 10)
#图像参数变化
def forward(self, x): # input(3, 32, 32)
x = F.relu(self.conv1(x)) #output(16, 28, 28)
x = self.pool1(x) # output(16, 14, 14)
x = F.relu(self.conv2(x)) # output(32, 10, 10)
x = self.pool2(x) # output(32, 5, 5)
x = x.view(-1, 32*5*5) # output(32*5*5)
x = F.relu(self.fc1(x)) # output(120)
x = F.relu(self.fc2(x)) # output(84)
x = self.fc3(x) # output(10)
return x
网络结构如下,下面将对每一层做一个介绍:
网络中feature map的变化大致如下:
LeNet实例应用
- 数据预处理
# 对数据进行预处理
transform = transforms.Compose(
[
# 将输入的 numpy.ndarry[h*w*c]转变为[c*h*w],像素点值从[0,255],标准化为[0,1]
transforms.ToTensor(),
# 将数据进行标注化
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
)
- 数据读取
如果是初次使用CIFAR,需要将download打开,也可以自行通过其他方式进行下载。
# 读取数据-训练集
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36, shuffle=False, num_workers=0)
- 定义网络
通过LeNet中的介绍,完成网络的定义。
- 定义损失函数和优化器
pytorch支持很多损失函数和优化器,可以根据需要进行设定
# 定义损失函数
loss_function = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(net.parameters(), lr=0.001)
- 模型训练
# 开始训练,设置迭代轮次 epoch
for epoch in range(3):
# 损失函数值
running_loss = 0.0
for step, data in enumerate(train_loader, start=0):
inputs, labels = data
# 清除梯度累加值
optimizer.zero_grad()
outputs = net(inputs.to(device))
# 计算损失值
loss = loss_function(outputs, labels.to(device))
# 计算梯度
loss.backward()
# 参数更新
optimizer.step()
# 输出损失值
running_loss += loss.item()
if step % 500 == 499:
with torch.no_grad():
outputs = net(val_image.to(device))
# 输出最大概率
predict_y = torch.max(outputs, dim=1)[1]
accuracy = (predict_y == val_label.to(device)).sum().item() / val_label.size(0)
print('[%d, %5d] train_Loss:%.3f tese_accuracy: %.3f' % (epoch + 1, step + 1, running_loss/500, accuracy))
running_loss = 0.0
print('train finished')
- 保存模型
# 保存模型
save_path = './Lenet.pth'
torch.save(net.state_dict(), save_path)
补充
- Pytorch中tensor的顺序是:[batch, channel, height, width]
- 卷积层中计算输出大小
- W表示输入图像的Weight,一般Weight=hight
- F表示核的大小,核大小一般为F * F
- P表示Padding,Conv2d中默认是0
- S表示步长
因此对于32*32的输入,在该网络中Output=(32-5+2*0)/1 +1 = 28
- 池化层只改变特征的高和宽,不改变深度
因此对于16*28*28,经过MaxPooling后变成了16*14*14
相关推荐
- sharding-jdbc实现`分库分表`与`读写分离`
-
一、前言本文将基于以下环境整合...
- 三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么
-
在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...
- MySQL8行级锁_mysql如何加行级锁
-
MySQL8行级锁版本:8.0.34基本概念...
- mysql使用小技巧_mysql使用入门
-
1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...
- MySQL/MariaDB中如何支持全部的Unicode?
-
永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...
- 聊聊 MySQL Server 可执行注释,你懂了吗?
-
前言MySQLServer当前支持如下3种注释风格:...
- MySQL系列-源码编译安装(v5.7.34)
-
一、系统环境要求...
- MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了
-
对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...
- MySQL字符问题_mysql中字符串的位置
-
中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...
- 深圳尚学堂:mysql基本sql语句大全(三)
-
数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...
- MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?
-
大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...
- 一文讲清怎么利用Python Django实现Excel数据表的导入导出功能
-
摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...
- 用DataX实现两个MySQL实例间的数据同步
-
DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...
- MySQL数据库知识_mysql数据库基础知识
-
MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...
- 如何为MySQL中的JSON字段设置索引
-
背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)