百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

神经网络-LeNet 神经网络概念股

ztj100 2024-12-17 17:49 18 浏览 0 评论

LeNet在1990年被提出,是一系列网络的统称,包括了LeNet1~LeNet5,对于神经网络的学习者来说,大家对下面这个图一定很熟悉,该图是对LeNet的简化展示。

在LeNet中已经提出了卷积层、Pooling层等概念,只是但是由于缺乏大量数据和计算机硬件资源限制,导致LeNet的表现并不理想。

LeNet网络结构

LeNet的构成很简单,包括了基础的卷积层、池化层和全连接层,原始的LeNet使用的是灰度图像,下面示例中使用彩色图像进行说明,不影响网络的理解。

  • 定义网络层
# 定义网络
class LeNet(nn.Module):                    #继承来着nn.Module的父类
    def __init__(self):  
        # 初始化网络
        #super()继承父类的构造函数,多继承需用到super函数
        super(LeNet, self).__init__()
        
        # 定义卷积层,[深度,卷积核数,卷积核大小]
        self.conv1 = nn.Conv2d(3, 16, 5)
        # 最大池化,[核大小,步长]
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, 5)
        self.pool2 = nn.MaxPool2d(2, 2)
        # 全连接层
        self.fc1 = nn.Linear(32*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        # 根据训练项目,调整类别数
        self.fc3 = nn.Linear(84, 10)
                                     #图像参数变化
    def forward(self, x):            # input(3, 32, 32)        
        x = F.relu(self.conv1(x))    #output(16, 28, 28)
        x = self.pool1(x)            # output(16, 14, 14)
        x = F.relu(self.conv2(x))    # output(32, 10, 10)
        x = self.pool2(x)            # output(32, 5, 5)
        x = x.view(-1, 32*5*5)       # output(32*5*5)
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)
        return x

网络结构如下,下面将对每一层做一个介绍:

网络中feature map的变化大致如下:

LeNet实例应用

  • 数据预处理
# 对数据进行预处理
transform = transforms.Compose(
    [
        # 将输入的 numpy.ndarry[h*w*c]转变为[c*h*w],像素点值从[0,255],标准化为[0,1]
        transforms.ToTensor(),
        # 将数据进行标注化
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ]
)
  • 数据读取

如果是初次使用CIFAR,需要将download打开,也可以自行通过其他方式进行下载。

# 读取数据-训练集
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36, shuffle=False, num_workers=0)
  • 定义网络

通过LeNet中的介绍,完成网络的定义。

  • 定义损失函数和优化器

pytorch支持很多损失函数和优化器,可以根据需要进行设定

# 定义损失函数
loss_function = nn.CrossEntropyLoss()

# 定义优化器
optimizer = optim.Adam(net.parameters(), lr=0.001)
  • 模型训练
# 开始训练,设置迭代轮次 epoch
for epoch in range(3):
    # 损失函数值
    running_loss = 0.0
    
    for step, data in enumerate(train_loader, start=0):
        inputs, labels = data
        
        # 清除梯度累加值
        optimizer.zero_grad()
        
        outputs = net(inputs.to(device))
        # 计算损失值
        loss = loss_function(outputs, labels.to(device))
        # 计算梯度
        loss.backward()
        # 参数更新
        optimizer.step()
        
        # 输出损失值
        running_loss += loss.item()
        if step % 500 == 499:
            with torch.no_grad():
                outputs = net(val_image.to(device))
                # 输出最大概率
                predict_y = torch.max(outputs, dim=1)[1]
                accuracy = (predict_y == val_label.to(device)).sum().item() / val_label.size(0)
                
                print('[%d, %5d] train_Loss:%.3f tese_accuracy: %.3f' % (epoch + 1, step + 1, running_loss/500, accuracy))
                running_loss = 0.0
                
print('train finished')
  • 保存模型
# 保存模型
save_path = './Lenet.pth'
torch.save(net.state_dict(), save_path)

补充

  • Pytorch中tensor的顺序是:[batch, channel, height, width]
  • 卷积层中计算输出大小
  • W表示输入图像的Weight,一般Weight=hight
  • F表示核的大小,核大小一般为F * F
  • P表示Padding,Conv2d中默认是0
  • S表示步长

因此对于32*32的输入,在该网络中Output=(32-5+2*0)/1 +1 = 28

  • 池化层只改变特征的高和宽,不改变深度

因此对于16*28*28,经过MaxPooling后变成了16*14*14

相关推荐

SpringBoot如何实现优雅的参数校验
SpringBoot如何实现优雅的参数校验

平常业务中肯定少不了校验,如果我们把大量的校验代码夹杂到业务中,肯定是不优雅的,对于一些简单的校验,我们可以使用java为我们提供的api进行处理,同时对于一些...

2025-05-11 19:46 ztj100

Java中的空指针怎么处理?

#暑期创作大赛#Java程序员工作中遇到最多的错误就是空指针异常,无论你多么细心,一不留神就从代码的某个地方冒出NullPointerException,令人头疼。...

一坨一坨 if/else 参数校验,被 SpringBoot 参数校验组件整干净了

来源:https://mp.weixin.qq.com/s/ZVOiT-_C3f-g7aj3760Q-g...

用了这两款插件,同事再也不说我代码写的烂了

同事:你的代码写的不行啊,不够规范啊。我:我写的代码怎么可能不规范,不要胡说。于是同事打开我的IDEA,安装了一个插件,然后执行了一下,规范不规范,看报告吧。这可怎么是好,这玩意竟然给我挑出来这么...

SpringBoot中6种拦截器使用场景

SpringBoot中6种拦截器使用场景,下面是思维导图详细总结一、拦截器基础...

用注解进行参数校验,spring validation介绍、使用、实现原理分析

springvalidation是什么在平时的需求开发中,经常会有参数校验的需求,比如一个接收用户注册请求的接口,要校验用户传入的用户名不能为空、用户名长度不超过20个字符、传入的手机号是合法的手机...

快速上手:SpringBoot自定义请求参数校验

作者:UncleChen来源:http://unclechen.github.io/最近在工作中遇到写一些API,这些API的请求参数非常多,嵌套也非常复杂,如果参数的校验代码全部都手动去实现,写起来...

分布式微服务架构组件

1、服务发现-Nacos服务发现、配置管理、服务治理及管理,同类产品还有ZooKeeper、Eureka、Consulhttps://nacos.io/zh-cn/docs/what-is-nacos...

优雅的参数校验,告别冗余if-else

一、参数校验简介...

Spring Boot断言深度指南:用断言机制为代码构筑健壮防线

在SpringBoot开发中,断言(Assert)如同代码的"体检医生",能在上线前精准捕捉业务逻辑漏洞。本文将结合企业级实践,解析如何通过断言机制实现代码自检、异常预警与性能优化三...

如何在项目中优雅的校验参数

本文看点前言验证数据是贯穿所有应用程序层(从表示层到持久层)的常见任务。通常在每一层实现相同的验证逻辑,这既费时又容易出错。为了避免重复这些验证,开发人员经常将验证逻辑直接捆绑到域模型中,将域类与验证...

SpingBoot项目使用@Validated和@Valid参数校验

一、什么是参数校验?我们在后端开发中,经常遇到的一个问题就是入参校验。简单来说就是对一个方法入参的参数进行校验,看是否符合我们的要求。比如入参要求是一个金额,你前端没做限制,用户随便过来一个负数,或者...

28个验证注解,通过业务案例让你精通Java数据校验(收藏篇)

在现代软件开发中,数据验证是确保应用程序健壮性和可靠性的关键环节。JavaBeanValidation(JSR380)作为一个功能强大的规范,为我们提供了一套全面的注解工具集,这些注解能够帮...

Springboot @NotBlank参数校验失效汇总

有时候明明一个微服务里的@Validated和@NotBlank用的好好的,但就是另一个里不能用,这时候问题是最不好排查的,下面列举了各种失效情况的汇总,供各位参考:1、版本问题springbo...

这可能是最全面的Spring面试八股文了

Spring是什么?Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。...

取消回复欢迎 发表评论: