PyTorch强化:05.PyTorch 保存和加载模型
ztj100 2024-12-17 17:48 20 浏览 0 评论
当保存和加载模型时,需要熟悉三个核心功能:
- torch.save:将序列化对象保存到磁盘。此函数使用Python的pickle模块进行序列化。使用此函数可以保存如模型、tensor、字典等各种对象。
- torch.load:使用pickle的unpickling功能将pickle对象文件反序列化到内存。此功能还可以有助于设备加载数据。
- torch.nn.Module.load_state_dict:使用反序列化函数 state_dict 来加载模型的参数字典。
1.什么是状态字典:state_dict?
在PyTorch中,torch.nn.Module模型的可学习参数(即权重和偏差)包含在模型的参数中,(使用model.parameters()可以进行访问)。state_dict是Python字典对象,它将每一层映射到其参数张量。注意,只有具有可学习参数的层(如卷积层,线性层等)的模型 才具有state_dict这一项。目标优化torch.optim也有state_dict属性,它包含有关优化器的状态信息,以及使用的超参数。
因为state_dict的对象是Python字典,所以它们可以很容易的保存、更新、修改和恢复,为PyTorch模型和优化器添加了大量模块。
下面通过从简单模型训练一个分类器中来了解一下state_dict的使用。
# 定义模型
class TheModelClass(nn.Module):
def __init__(self):
super(TheModelClass, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 初始化模型
model = TheModelClass()
# 初始化优化器
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 打印模型的状态字典
print("Model's state_dict:")
for param_tensor in model.state_dict():
print(param_tensor, "\t", model.state_dict()[param_tensor].size())
# 打印优化器的状态字典
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
print(var_name, "\t", optimizer.state_dict()[var_name])
- 输出
Model's state_dict:
conv1.weight torch.Size([6, 3, 5, 5])
conv1.bias torch.Size([6])
conv2.weight torch.Size([16, 6, 5, 5])
conv2.bias torch.Size([16])
fc1.weight torch.Size([120, 400])
fc1.bias torch.Size([120])
fc2.weight torch.Size([84, 120])
fc2.bias torch.Size([84])
fc3.weight torch.Size([10, 84])
fc3.bias torch.Size([10])
Optimizer's state_dict:
state {}
param_groups [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [4675713712, 4675713784, 4675714000, 4675714072, 4675714216, 4675714288, 4675714432, 4675714504, 4675714648, 4675714720]}]
2.保存和加载推理模型
2.1 保存/加载state_dict(推荐使用)
- 保存
torch.save(model.state_dict(), PATH)
- 加载
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()
当保存好模型用来推断的时候,只需要保存模型学习到的参数,使用torch.save()函数来保存模型state_dict,它会给模型恢复提供 最大的灵活性,这就是为什么要推荐它来保存的原因。
在 PyTorch 中最常见的模型保存使‘.pt’或者是‘.pth’作为模型文件扩展名。
请记住,在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 层为评估模式。如果不这么做,可能导致 模型推断结果不一致。
- 注意
load_state_dict()函数只接受字典对象,而不是保存对象的路径。这就意味着在你传给load_state_dict()函数之前,你必须反序列化 你保存的state_dict。例如,你无法通过 model.load_state_dict(PATH)来加载模型。
2.2 保存/加载完整模型
- 保存
torch.save(model, PATH)
- 加载
# 模型类必须在此之前被定义
model = torch.load(PATH)
model.eval()
此部分保存/加载过程使用最直观的语法并涉及最少量的代码。以 Python `pickle 模块的方式来保存模型。这种方法的缺点是序列化数据受 限于某种特殊的类而且需要确切的字典结构。这是因为pickle无法保存模型类本身。相反,它保存包含类的文件的路径,该文件在加载时使用。 因此,当在其他项目使用或者重构之后,您的代码可能会以各种方式中断。
在 PyTorch 中最常见的模型保存使用‘.pt’或者是‘.pth’作为模型文件扩展名。
请记住,在运行推理之前,务必调用model.eval() 设置 dropout 和 batch normalization 层为评估模式。如果不这么做,可能导致模型推断结果不一致。
3. 保存和加载 Checkpoint 用于推理/继续训练
- 保存
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
...
}, PATH)
- 加载
model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval()
# - or -
model.train()
当保存成 Checkpoint 的时候,可用于推理或者是继续训练,保存的不仅仅是模型的 state_dict 。保存优化器的 state_dict 也很重要, 因为它包含作为模型训练更新的缓冲区和参数。你也许想保存其他项目,比如最新记录的训练损失,外部的torch.nn.Embedding层等等。
要保存多个组件,请在字典中组织它们并使用torch.save()来序列化字典。PyTorch 中常见的保存checkpoint 是使用 .tar 文件扩展名。
要加载项目,首先需要初始化模型和优化器,然后使用torch.load()来加载本地字典。这里,你可以非常容易的通过简单查询字典来访问你所保存的项目。
请记住在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 为评估。如果不这样做,有可能得到不一致的推断结果。 如果你想要恢复训练,请调用model.train()以确保这些层处于训练模式。
4. 在一个文件中保存多个模型
- 保存
torch.save({
'modelA_state_dict': modelA.state_dict(),
'modelB_state_dict': modelB.state_dict(),
'optimizerA_state_dict': optimizerA.state_dict(),
'optimizerB_state_dict': optimizerB.state_dict(),
...
}, PATH)
- 加载
modelA = TheModelAClass(*args, **kwargs)
modelB = TheModelBClass(*args, **kwargs)
optimizerA = TheOptimizerAClass(*args, **kwargs)
optimizerB = TheOptimizerBClass(*args, **kwargs)
checkpoint = torch.load(PATH)
modelA.load_state_dict(checkpoint['modelA_state_dict'])
modelB.load_state_dict(checkpoint['modelB_state_dict'])
optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])
optimizerB.load_state_dict(checkpoint['optimizerB_state_dict'])
modelA.eval()
modelB.eval()
# - or -
modelA.train()
modelB.train()
当保存一个模型由多个torch.nn.Modules组成时,例如GAN(对抗生成网络)、sequence-to-sequence (序列到序列模型), 或者是多个模 型融合, 可以采用与保存常规检查点相同的方法。换句话说,保存每个模型的 state_dict 的字典和相对应的优化器。如前所述,可以通 过简单地将它们附加到字典的方式来保存任何其他项目,这样有助于恢复训练。
PyTorch 中常见的保存 checkpoint 是使用 .tar 文件扩展名。
要加载项目,首先需要初始化模型和优化器,然后使用torch.load()来加载本地字典。这里,你可以非常容易的通过简单查询字典来访问你所保存的项目。
请记住在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 为评估。如果不这样做,有可能得到不一致的推断结果。 如果你想要恢复训练,请调用model.train()以确保这些层处于训练模式。
5. 使用在不同模型参数下的热启动模式
- 保存
torch.save(modelA.state_dict(), PATH)
- 加载
modelB = TheModelBClass(*args, **kwargs)
modelB.load_state_dict(torch.load(PATH), strict=False)
在迁移学习或训练新的复杂模型时,部分加载模型或加载部分模型是常见的情况。利用训练好的参数,有助于热启动训练过程,并希望帮助你的模型比从头开始训练能够更快地收敛。
无论是从缺少某些键的 state_dict 加载还是从键的数目多于加载模型的 state_dict , 都可以通过在load_state_dict()函数中将strict参数设置为 False 来忽略非匹配键的函数。
如果要将参数从一个层加载到另一个层,但是某些键不匹配,主要修改正在加载的 state_dict 中的参数键的名称以匹配要在加载到模型中的键即可。
6. 通过设备保存/加载模型
6.1 保存到 CPU、加载到 CPU
- 保存
torch.save(model.state_dict(), PATH)
- 加载
device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))
当从CPU上加载模型在GPU上训练时, 将torch.device('cpu')传递给torch.load()函数中的map_location参数.在这种情况下,使用map_location参数将张量下的存储器动态的重新映射到CPU设备。
6.2 保存到 GPU、加载到 GPU
- 保存
torch.save(model.state_dict(), PATH)
- 加载
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)
# 确保在你提供给模型的任何输入张量上调用input = input.to(device)
当在GPU上训练并把模型保存在GPU,只需要使用model.to(torch.device('cuda')),将初始化的 model 转换为 CUDA 优化模型。另外,请 务必在所有模型输入上使用.to(torch.device('cuda'))函数来为模型准备数据。请注意,调用my_tensor.to(device)会在GPU上返回my_tensor的副本。 因此,请记住手动覆盖张量:my_tensor= my_tensor.to(torch.device('cuda'))。
6.3 保存到 CPU,加载到 GPU
- 保存
torch.save(model.state_dict(), PATH)
- 加载
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # Choose whatever GPU device number you want
model.to(device)
# 确保在你提供给模型的任何输入张量上调用input = input.to(device)
在CPU上训练好并保存的模型加载到GPU时,将torch.load()函数中的map_location参数设置为cuda:device_id。这会将模型加载到 指定的GPU设备。接下来,请务必调用model.to(torch.device('cuda'))将模型的参数张量转换为 CUDA 张量。最后,确保在所有模型输入上使用.to(torch.device('cuda'))函数来为CUDA优化模型。请注意,调用my_tensor.to(device)会在GPU上返回my_tensor的新副本。它不会覆盖my_tensor。 因此, 请手动覆盖张量my_tensor = my_tensor.to(torch.device('cuda'))。
6.4 保存 torch.nn.DataParallel 模型
- 保存
torch.save(model.module.state_dict(), PATH)
- 加载
# 加载任何你想要的设备
torch.nn.DataParallel是一个模型封装,支持并行GPU使用。要普通保存 DataParallel 模型, 请保存model.module.state_dict()。 这样,你就可以非常灵活地以任何方式加载模型到你想要的设备中。
2020未来杯AI挑战赛-图像赛道-语音赛道同时开启,30万大奖等你来挑战!
https://ai.futurelab.tv/tournament/6
相关推荐
-
- SpringBoot如何实现优雅的参数校验
-
平常业务中肯定少不了校验,如果我们把大量的校验代码夹杂到业务中,肯定是不优雅的,对于一些简单的校验,我们可以使用java为我们提供的api进行处理,同时对于一些...
-
2025-05-11 19:46 ztj100
- Java中的空指针怎么处理?
-
#暑期创作大赛#Java程序员工作中遇到最多的错误就是空指针异常,无论你多么细心,一不留神就从代码的某个地方冒出NullPointerException,令人头疼。...
- 一坨一坨 if/else 参数校验,被 SpringBoot 参数校验组件整干净了
-
来源:https://mp.weixin.qq.com/s/ZVOiT-_C3f-g7aj3760Q-g...
- 用了这两款插件,同事再也不说我代码写的烂了
-
同事:你的代码写的不行啊,不够规范啊。我:我写的代码怎么可能不规范,不要胡说。于是同事打开我的IDEA,安装了一个插件,然后执行了一下,规范不规范,看报告吧。这可怎么是好,这玩意竟然给我挑出来这么...
- SpringBoot中6种拦截器使用场景
-
SpringBoot中6种拦截器使用场景,下面是思维导图详细总结一、拦截器基础...
- 用注解进行参数校验,spring validation介绍、使用、实现原理分析
-
springvalidation是什么在平时的需求开发中,经常会有参数校验的需求,比如一个接收用户注册请求的接口,要校验用户传入的用户名不能为空、用户名长度不超过20个字符、传入的手机号是合法的手机...
- 快速上手:SpringBoot自定义请求参数校验
-
作者:UncleChen来源:http://unclechen.github.io/最近在工作中遇到写一些API,这些API的请求参数非常多,嵌套也非常复杂,如果参数的校验代码全部都手动去实现,写起来...
- 分布式微服务架构组件
-
1、服务发现-Nacos服务发现、配置管理、服务治理及管理,同类产品还有ZooKeeper、Eureka、Consulhttps://nacos.io/zh-cn/docs/what-is-nacos...
- 优雅的参数校验,告别冗余if-else
-
一、参数校验简介...
- Spring Boot断言深度指南:用断言机制为代码构筑健壮防线
-
在SpringBoot开发中,断言(Assert)如同代码的"体检医生",能在上线前精准捕捉业务逻辑漏洞。本文将结合企业级实践,解析如何通过断言机制实现代码自检、异常预警与性能优化三...
- 如何在项目中优雅的校验参数
-
本文看点前言验证数据是贯穿所有应用程序层(从表示层到持久层)的常见任务。通常在每一层实现相同的验证逻辑,这既费时又容易出错。为了避免重复这些验证,开发人员经常将验证逻辑直接捆绑到域模型中,将域类与验证...
- SpingBoot项目使用@Validated和@Valid参数校验
-
一、什么是参数校验?我们在后端开发中,经常遇到的一个问题就是入参校验。简单来说就是对一个方法入参的参数进行校验,看是否符合我们的要求。比如入参要求是一个金额,你前端没做限制,用户随便过来一个负数,或者...
- 28个验证注解,通过业务案例让你精通Java数据校验(收藏篇)
-
在现代软件开发中,数据验证是确保应用程序健壮性和可靠性的关键环节。JavaBeanValidation(JSR380)作为一个功能强大的规范,为我们提供了一套全面的注解工具集,这些注解能够帮...
- Springboot @NotBlank参数校验失效汇总
-
有时候明明一个微服务里的@Validated和@NotBlank用的好好的,但就是另一个里不能用,这时候问题是最不好排查的,下面列举了各种失效情况的汇总,供各位参考:1、版本问题springbo...
- 这可能是最全面的Spring面试八股文了
-
Spring是什么?Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)