OpenCV中基于深度学习的边缘检测
ztj100 2024-12-12 16:14 9 浏览 0 评论
作者:ANKIT SACHAN
编译:ronghuaiyang
导读
分析了Canny的优劣,并给出了OpenCV使用深度学习做边缘检测的流程,文末有代码链接。
在这篇文章中,我们将学习如何在OpenCV中使用基于深度学习的边缘检测,它比目前流行的canny边缘检测器更精确。边缘检测在许多用例中是有用的,如视觉显著性检测,目标检测,跟踪和运动分析,结构从运动,3D重建,自动驾驶,图像到文本分析等等。
什么是边缘检测?
边缘检测是计算机视觉中一个非常古老的问题,它涉及到检测图像中的边缘来确定目标的边界,从而分离感兴趣的目标。最流行的边缘检测技术之一是Canny边缘检测,它已经成为大多数计算机视觉研究人员和实践者的首选方法。让我们快速看一下Canny边缘检测。
Canny边缘检测算法
1983年,John Canny在麻省理工学院发明了Canny边缘检测。它将边缘检测视为一个信号处理问题。其核心思想是,如果你观察图像中每个像素的强度变化,它在边缘的时候非常高。
在下面这张简单的图片中,强度变化只发生在边界上。所以,你可以很容易地通过观察像素强度的变化来识别边缘。
现在,看下这张图片。强度不是恒定的,但强度的变化率在边缘处最高。(微积分复习:变化率可以用一阶导数(梯度)来计算。)
Canny边缘检测器通过4步来识别边缘:
- 去噪:因为这种方法依赖于强度的突然变化,如果图像有很多随机噪声,那么会将噪声作为边缘。所以,使用5×5的高斯滤波器平滑你的图像是一个非常好的主意。
- 梯度计算:下一步,我们计算图像中每个像素的强度的梯度(强度变化率)。我们也计算梯度的方向。
梯度方向垂直于边缘,它被映射到四个方向中的一个(水平、垂直和两个对角线方向)。
- 非极大值抑制:现在,我们想删除不是边缘的像素(设置它们的值为0)。你可能会说,我们可以简单地选取梯度值最高的像素,这些就是我们的边。然而,在真实的图像中,梯度不是简单地在只一个像素处达到峰值,而是在临近边缘的像素处都非常高。因此我们在梯度方向上取3×3附近的局部最大值。
- 迟滞阈值化:在下一步中,我们需要决定一个梯度的阈值,低于这个阈值所有的像素都将被抑制(设置为0)。而Canny边缘检测器则采用迟滞阈值法。迟滞阈值法是一种非常简单而有效的方法。我们使用两个阈值来代替只用一个阈值:高阈值 = 选择一个非常高的值,这样任何梯度值高于这个值的像素都肯定是一个边缘。低阈值 = 选择一个非常低的值,任何梯度值低于该值的像素绝对不是边缘。在这两个阈值之间有梯度的像素会被检查,如果它们和边缘相连,就会留下,否则就会去掉。
迟滞阈值化
Canny 边缘检测的问题:
由于Canny边缘检测器只关注局部变化,没有语义(理解图像的内容)理解,精度有限(很多时候是这样)。
Canny边缘检测器在这种情况下会失败,因为没有理解图像的上下文
语义理解对于边缘检测是至关重要的,这就是为什么使用机器学习或深度学习的基于学习的检测器比canny边缘检测器产生更好的结果。
OpenCV中基于深度学习的边缘检测
OpenCV在其全新的DNN模块中集成了基于深度学习的边缘检测技术。你需要OpenCV 3.4.3或更高版本。这种技术被称为整体嵌套边缘检测或HED,是一种基于学习的端到端边缘检测系统,使用修剪过的类似vgg的卷积神经网络进行图像到图像的预测任务。
HED利用了中间层的输出。之前的层的输出称为side output,将所有5个卷积层的输出进行融合,生成最终的预测。由于在每一层生成的特征图大小不同,它可以有效地以不同的尺度查看图像。
HED方法不仅比其他基于深度学习的方法更准确,而且速度也比其他方法快得多。这就是为什么OpenCV决定将其集成到新的DNN模块中。以下是这篇论文的结果:
在OpenCV中训练深度学习边缘检测的代码
OpenCV使用的预训练模型已经在Caffe框架中训练过了,可以这样加载:
sh download_pretrained.sh
网络中有一个crop层,默认是没有实现的,所以我们需要自己实现一下。
class CropLayer(object):
def __init__(self, params, blobs):
self.xstart = 0
self.xend = 0
self.ystart = 0
self.yend = 0
# Our layer receives two inputs. We need to crop the first input blob
# to match a shape of the second one (keeping batch size and number of channels)
def getMemoryShapes(self, inputs):
inputShape, targetShape = inputs[0], inputs[1]
batchSize, numChannels = inputShape[0], inputShape[1]
height, width = targetShape[2], targetShape[3]
self.ystart = (inputShape[2] - targetShape[2]) // 2
self.xstart = (inputShape[3] - targetShape[3]) // 2
self.yend = self.ystart + height
self.xend = self.xstart + width
return [[batchSize, numChannels, height, width]]
def forward(self, inputs):
return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]
现在,我们可以重载这个类,只需用一行代码注册该层。
cv.dnn_registerLayer('Crop', CropLayer)
现在,我们准备构建网络图并加载权重,这可以通过OpenCV的dnn.readNe函数。
net = cv.dnn.readNet(args.prototxt, args.caffemodel)
现在,下一步是批量加载图像,并通过网络运行它们。为此,我们使用cv2.dnn.blobFromImage方法。该方法从输入图像中创建四维blob。
blob = cv.dnn.blobFromImage(image, scalefactor, size, mean, swapRB, crop)
其中:
image:是我们想要发送给神经网络进行推理的输入图像。
scalefactor:图像缩放常数,很多时候我们需要把uint8的图像除以255,这样所有的像素都在0到1之间。默认值是1.0,不缩放。
size:输出图像的空间大小。它将等于后续神经网络作为blobFromImage输出所需的输入大小。
swapRB:布尔值,表示我们是否想在3通道图像中交换第一个和最后一个通道。OpenCV默认图像为BGR格式,但如果我们想将此顺序转换为RGB,我们可以将此标志设置为True,这也是默认值。
mean:为了进行归一化,有时我们计算训练数据集上的平均像素值,并在训练过程中从每幅图像中减去它。如果我们在训练中做均值减法,那么我们必须在推理中应用它。这个平均值是一个对应于R, G, B通道的元组。例如Imagenet数据集的均值是R=103.93, G=116.77, B=123.68。如果我们使用swapRB=False,那么这个顺序将是(B, G, R)。
crop:布尔标志,表示我们是否想居中裁剪图像。如果设置为True,则从中心裁剪输入图像时,较小的尺寸等于相应的尺寸,而其他尺寸等于或大于该尺寸。然而,如果我们将其设置为False,它将保留长宽比,只是将其调整为固定尺寸大小。
在我们这个场景下:
inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height),
mean=(104.00698793, 116.66876762, 122.67891434), swapRB=False,
crop=False)
现在,我们只需要调用一下前向方法。
net.setInput(inp)
out = net.forward()
out = out[0, 0]
out = cv.resize(out, (frame.shape[1], frame.shape[0]))
out = 255 * out
out = out.astype(np.uint8)
out=cv.cvtColor(out,cv.COLOR_GRAY2BGR)
con=np.concatenate((frame,out),axis=1)
cv.imshow(kWinName,con)
结果:
中间的图像是人工标注的图像,右边是HED的结果
中间的图像是人工标注的图像,右边是HED的结果
文中的代码:https://github.com/sankit1/cv-tricks.com/tree/master/OpenCV/Edge_detection
英文原文:https://cv-tricks.com/opencv-dnn/edge-detection-hed/
相关推荐
-
- SpringBoot如何实现优雅的参数校验
-
平常业务中肯定少不了校验,如果我们把大量的校验代码夹杂到业务中,肯定是不优雅的,对于一些简单的校验,我们可以使用java为我们提供的api进行处理,同时对于一些...
-
2025-05-11 19:46 ztj100
- Java中的空指针怎么处理?
-
#暑期创作大赛#Java程序员工作中遇到最多的错误就是空指针异常,无论你多么细心,一不留神就从代码的某个地方冒出NullPointerException,令人头疼。...
- 一坨一坨 if/else 参数校验,被 SpringBoot 参数校验组件整干净了
-
来源:https://mp.weixin.qq.com/s/ZVOiT-_C3f-g7aj3760Q-g...
- 用了这两款插件,同事再也不说我代码写的烂了
-
同事:你的代码写的不行啊,不够规范啊。我:我写的代码怎么可能不规范,不要胡说。于是同事打开我的IDEA,安装了一个插件,然后执行了一下,规范不规范,看报告吧。这可怎么是好,这玩意竟然给我挑出来这么...
- SpringBoot中6种拦截器使用场景
-
SpringBoot中6种拦截器使用场景,下面是思维导图详细总结一、拦截器基础...
- 用注解进行参数校验,spring validation介绍、使用、实现原理分析
-
springvalidation是什么在平时的需求开发中,经常会有参数校验的需求,比如一个接收用户注册请求的接口,要校验用户传入的用户名不能为空、用户名长度不超过20个字符、传入的手机号是合法的手机...
- 快速上手:SpringBoot自定义请求参数校验
-
作者:UncleChen来源:http://unclechen.github.io/最近在工作中遇到写一些API,这些API的请求参数非常多,嵌套也非常复杂,如果参数的校验代码全部都手动去实现,写起来...
- 分布式微服务架构组件
-
1、服务发现-Nacos服务发现、配置管理、服务治理及管理,同类产品还有ZooKeeper、Eureka、Consulhttps://nacos.io/zh-cn/docs/what-is-nacos...
- 优雅的参数校验,告别冗余if-else
-
一、参数校验简介...
- Spring Boot断言深度指南:用断言机制为代码构筑健壮防线
-
在SpringBoot开发中,断言(Assert)如同代码的"体检医生",能在上线前精准捕捉业务逻辑漏洞。本文将结合企业级实践,解析如何通过断言机制实现代码自检、异常预警与性能优化三...
- 如何在项目中优雅的校验参数
-
本文看点前言验证数据是贯穿所有应用程序层(从表示层到持久层)的常见任务。通常在每一层实现相同的验证逻辑,这既费时又容易出错。为了避免重复这些验证,开发人员经常将验证逻辑直接捆绑到域模型中,将域类与验证...
- SpingBoot项目使用@Validated和@Valid参数校验
-
一、什么是参数校验?我们在后端开发中,经常遇到的一个问题就是入参校验。简单来说就是对一个方法入参的参数进行校验,看是否符合我们的要求。比如入参要求是一个金额,你前端没做限制,用户随便过来一个负数,或者...
- 28个验证注解,通过业务案例让你精通Java数据校验(收藏篇)
-
在现代软件开发中,数据验证是确保应用程序健壮性和可靠性的关键环节。JavaBeanValidation(JSR380)作为一个功能强大的规范,为我们提供了一套全面的注解工具集,这些注解能够帮...
- Springboot @NotBlank参数校验失效汇总
-
有时候明明一个微服务里的@Validated和@NotBlank用的好好的,但就是另一个里不能用,这时候问题是最不好排查的,下面列举了各种失效情况的汇总,供各位参考:1、版本问题springbo...
- 这可能是最全面的Spring面试八股文了
-
Spring是什么?Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)