高斯混合模型 GMM 的详细解释
ztj100 2024-12-12 16:13 21 浏览 0 评论
高斯混合模型(后面本文中将使用他的缩写 GMM)听起来很复杂,其实他的工作原理和 KMeans 非常相似,你甚至可以认为它是 KMeans 的概率版本。 这种概率特征使 GMM 可以应用于 KMeans 无法解决的许多复杂问题。
因为KMeans的限制很多,比如: 它假设簇是球形的并且大小相同,这在大多数现实世界的场景中是无效的。并且它是硬聚类方法,这意味着每个数据点都分配给一个集群,这也是不现实的。
在本文中,我们将根据上面的内容来介绍 KMeans 的一个替代方案之一,高斯混合模型。
从概念上解释:高斯混合模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。
高斯混合模型 (GMM) 算法的工作原理
正如前面提到的,可以将 GMM 称为 概率的KMeans,这是因为 KMeans 和 GMM 的起点和训练过程是相同的。 但是,KMeans 使用基于距离的方法,而 GMM 使用概率方法。 GMM 中有一个主要假设:数据集由多个高斯分布组成,换句话说,GMM 模型可以看作是由 K 个单高斯模型组合而成的模型,这 K 个子模型是混合模型的隐变量(Hidden variable)
上述分布通常称为多模型分布。 每个峰代表我们数据集中不同的高斯分布或聚类。 我们肉眼可以看到这些分布,但是使用公式如何估计这些分布呢?
在解释这个问题之前,我们先创建一些高斯分布。这里我们生成的是多元正态分布; 它是单变量正态分布的更高维扩展。
让我们定义数据点的均值和协方差。 使用均值和协方差,我们可以生成如下分布。
# Set the mean and covariance
mean1 = [0, 0]
mean2 = [2, 0]
cov1 = [[1, .7], [.7, 1]]
cov2 = [[.5, .4], [.4, .5]]
# Generate data from the mean and covariance
data1 = np.random.multivariate_normal(mean1, cov1, size=1000)
data2 = np.random.multivariate_normal(mean2, cov2, size=1000)
可视化一下生成的数据
plt.figure(figsize=(10,6))
plt.scatter(data1[:,0],data1[:,1])
plt.scatter(data2[:,0],data2[:,1])
sns.kdeplot(data1[:, 0], data1[:, 1], levels=20, linewidth=10, color='k', alpha=0.2)
sns.kdeplot(data2[:, 0], data2[:, 1], levels=20, linewidth=10, color='k', alpha=0.2)
plt.grid(False)
plt.show()
我们上面所做的工作是:使用均值和协方差矩阵生成了随机高斯分布。 而 GMM 要做正好与这个相反,也就是找到一个分布的均值和协方差,那么怎么做呢?
工作过程大致如下:
为给定的数据集确定聚类的数量(这里我们可以使用领域知识或其他方法,例如 BIC/AIC)。 根据我们上面的参数,有 1000 个数据点,和两个簇2。
初始化每个簇的均值、协方差和权重参数。
使用期望最大化算法执行以下操作:
- 期望步骤(E-step):计算每个数据点属于每个分布的概率,然后使用参数的当前估计评估似然函数
- 最大化步骤(M-step):更新之前的均值、协方差和权重参数,这样最大化E步骤中找到的预期似然
- 重复这些步骤,直到模型收敛。
以上是GMM 算法的非数学的通俗化的解释。
GMM 数学原理
有了上面的通俗解释,我们开始进入正题,上面的解释可以看到GMM 的核心在于上一节中描述的期望最大化 (EM) 算法。
在解释之前,我们先演示一下 EM 算法在 GMM 中的应用。
1、初始化均值、协方差和权重参数
- mean (μ): 随机初始化
- 协方差 (Σ):随机初始化
- 权重(混合系数)(π):每个类的分数是指特定数据点属于每个类的可能性。 一开始,这对所有簇都是平等的。 假设我们用三个分量拟合 GMM,那么每个组件的权重参数可能设置为 1/3,这样概率分布为 (1/3, 1/3, 1/3)。
2、期望步骤(E-step)
对于每个数据点,使用以下等式计算数据点属于簇 () 的概率。 这里的k是我分布(簇)数。
上面的_是高斯分布c的混合系数(有时称为权重),它在上一阶段被初始化,(|,)描述了高斯分布的概率密度函数(PDF),均值为和 关于数据点 x 的协方差 Σ; 所以可以有如下表示。
E-step 使用模型参数的当前估计值计算概率。 这些概率通常称为高斯分布的“responsibilities”。 它们由变量 r_ic 表示,其中 i 是数据点的索引,c 是高斯分布的索引。 responsibilities衡量第 c 个高斯分布对生成第 i 个数据点“负责”的程度。 这里使用条件概率,更具体地说是贝叶斯定理。
一个简单的例子。 假设我们有 100 个数据点,需要将它们聚类成两组。 我们可以这样写 r_ic(i=20,c=1) 。 其中 i 代表数据点的索引,c 代表我们正在考虑的簇的索引。
不要忘记在开始时,_ 会初始化为等值。 在我们的例子中,_1 = _2 = 1/2。
E-step 的结果是混合模型中每个数据点和每个高斯分布的一组responsibilities。 这些responsibilities会在 M-step更新模型参数的估计。
3、最大化步骤(M-step)
算法使用高斯分布的responsibilities(在 E-step中计算的)来更新模型参数的估计值。
M-step更新参数的估计如下:
上面的公式 4 更新 πc(混合系数),公式 5 更新 μc,公式6 更新 Σc。更新后的的估计会在下一个 E-step 中用于计算数据点的新responsibilities。
GMM 将将重复这个过程直到算法收敛,通常在模型参数从一次迭代到下一次迭代没有显着变化时就被认为收敛了。
让我们将上面的过程整理成一个简单的流程图,这样可以更好的理解:
数学原理完了,下面该开始使用 Python 从头开始实现 GMM了
使用 Python 从头开始实现 GMM
理解了数学原理,GMM的代码也不复杂,基本上上面的每一个公式使用1-2行就可以完成
首先,创建一个实验数据集,我们将为一维数据集实现 GMM,因为这个比较简单
import numpy as np
n_samples = 100
mu1, sigma1 = -5, 1.2
mu2, sigma2 = 5, 1.8
mu3, sigma3 = 0, 1.6
x1 = np.random.normal(loc = mu1, scale = np.sqrt(sigma1), size = n_samples)
x2 = np.random.normal(loc = mu2, scale = np.sqrt(sigma2), size = n_samples)
x3 = np.random.normal(loc = mu3, scale = np.sqrt(sigma3), size = n_samples)
X = np.concatenate((x1,x2,x3))
下面是可视化的函数封装
from scipy.stats import norm
def plot_pdf(mu,sigma,label,alpha=0.5,linestyle='k--',density=True):
"""
Plot 1-D data and its PDF curve.
"""
# Compute the mean and standard deviation of the data
# Plot the data
X = norm.rvs(mu, sigma, size=1000)
plt.hist(X, bins=50, density=density, alpha=alpha,label=label)
# Plot the PDF
x = np.linspace(X.min(), X.max(), 1000)
y = norm.pdf(x, mu, sigma)
plt.plot(x, y, linestyle)
并绘制生成的数据如下。 这里没有绘制数据本身,而是绘制了每个样本的概率密度。
plot_pdf(mu1,sigma1,label=r"$\mu={} \ ; \ \sigma={}#34;.format(mu1,sigma1))
plot_pdf(mu2,sigma2,label=r"$\mu={} \ ; \ \sigma={}#34;.format(mu2,sigma2))
plot_pdf(mu3,sigma3,label=r"$\mu={} \ ; \ \sigma={}#34;.format(mu3,sigma3))
plt.legend()
plt.show()
下面开始根据上面的公式实现代码:
1、初始化
def random_init(n_compenents):
"""Initialize means, weights and variance randomly
and plot the initialization
"""
pi = np.ones((n_compenents)) / n_compenents
means = np.random.choice(X, n_compenents)
variances = np.random.random_sample(size=n_compenents)
plot_pdf(means[0],variances[0],'Random Init 01')
plot_pdf(means[1],variances[1],'Random Init 02')
plot_pdf(means[2],variances[2],'Random Init 03')
plt.legend()
plt.show()
return means,variances,pi
2、E step
def step_expectation(X,n_components,means,variances):
"""E Step
Parameters
----------
X : array-like, shape (n_samples,)
The data.
n_components : int
The number of clusters
means : array-like, shape (n_components,)
The means of each mixture component.
variances : array-like, shape (n_components,)
The variances of each mixture component.
Returns
-------
weights : array-like, shape (n_components,n_samples)
"""
weights = np.zeros((n_components,len(X)))
for j in range(n_components):
weights[j,:] = norm(loc=means[j],scale=np.sqrt(variances[j])).pdf(X)
return weights
3、M step
def step_maximization(X,weights,means,variances,n_compenents,pi):
"""M Step
Parameters
----------
X : array-like, shape (n_samples,)
The data.
weights : array-like, shape (n_components,n_samples)
initilized weights array
means : array-like, shape (n_components,)
The means of each mixture component.
variances : array-like, shape (n_components,)
The variances of each mixture component.
n_components : int
The number of clusters
pi: array-like (n_components,)
mixture component weights
Returns
-------
means : array-like, shape (n_components,)
The means of each mixture component.
variances : array-like, shape (n_components,)
The variances of each mixture component.
"""
r = []
for j in range(n_compenents):
r.append((weights[j] * pi[j]) / (np.sum([weights[i] * pi[i] for i in range(n_compenents)], axis=0)))
#5th equation above
means[j] = np.sum(r[j] * X) / (np.sum(r[j]))
#6th equation above
variances[j] = np.sum(r[j] * np.square(X - means[j])) / (np.sum(r[j]))
#4th equation above
pi[j] = np.mean(r[j])
return variances,means,pi
然后就是训练的循环
def train_gmm(data,n_compenents=3,n_steps=50, plot_intermediate_steps_flag=True):
""" Training step of the GMM model
Parameters
----------
data : array-like, shape (n_samples,)
The data.
n_components : int
The number of clusters
n_steps: int
number of iterations to run
"""
#intilize model parameters at the start
means,variances,pi = random_init(n_compenents)
for step in range(n_steps):
#perform E step
weights = step_expectation(data,n_compenents,means,variances)
#perform M step
variances,means,pi = step_maximization(X, weights, means, variances, n_compenents, pi)
plot_pdf(means,variances)
这样就完成了,让我们看看 GMM 表现如何。
在上图中红色虚线表示原始分布,而其他颜色表示学习分布。 第 30 次迭代后,可以看到的模型在这个生成的数据集上表现良好。
这里只是为了解释GMM的概念进行的Python实现,在实际用例中请不要直接使用,请使用scikit-learn提供的GMM,因为它比我们这个手写的要快多了,具体的对象名是 sklearn.mixture.GaussianMixture,它的常用参数如下:
- tol:定义模型的停止标准。 当下限平均增益低于 tol 参数时,EM 迭代将停止。
- init_params:用于初始化权重的方法
总结
本文对高斯混合模型进行全面的介绍,希望阅读完本文后你对 GMM 能够有一个详细的了解,GMM 的一个常见问题是它不能很好地扩展到大型数据集。
作者:Ransaka Ravihara
- 上一篇:统计学中基础概念说明
- 下一篇:使用2D卷积技术进行时间序列预测
相关推荐
- sharding-jdbc实现`分库分表`与`读写分离`
-
一、前言本文将基于以下环境整合...
- 三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么
-
在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...
- MySQL8行级锁_mysql如何加行级锁
-
MySQL8行级锁版本:8.0.34基本概念...
- mysql使用小技巧_mysql使用入门
-
1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...
- MySQL/MariaDB中如何支持全部的Unicode?
-
永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...
- 聊聊 MySQL Server 可执行注释,你懂了吗?
-
前言MySQLServer当前支持如下3种注释风格:...
- MySQL系列-源码编译安装(v5.7.34)
-
一、系统环境要求...
- MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了
-
对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...
- MySQL字符问题_mysql中字符串的位置
-
中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...
- 深圳尚学堂:mysql基本sql语句大全(三)
-
数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...
- MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?
-
大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...
- 一文讲清怎么利用Python Django实现Excel数据表的导入导出功能
-
摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...
- 用DataX实现两个MySQL实例间的数据同步
-
DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...
- MySQL数据库知识_mysql数据库基础知识
-
MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...
- 如何为MySQL中的JSON字段设置索引
-
背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)