百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

python数据分析与挖掘实战—银行分控模型(几种算法模型的比较)

ztj100 2024-12-07 18:52 24 浏览 0 评论

一、神经网络算法:

 1 import pandas as pd 
 2 from keras.models import Sequential
 3 from keras.layers.core import Dense, Activation
 4 import numpy as np
 5 # 参数初始化
 6 inputfile = 'C:/Users/76319/Desktop/bankloan.xls'
 7 data = pd.read_excel(inputfile)
 8 x_test = data.iloc[:,:8].values
 9 y_test = data.iloc[:,8].values
10 inputfile = 'C:/Users/76319/Desktop/bankloan.xls'
11 data = pd.read_excel(inputfile)
12 x_test = data.iloc[:,:8].values
13 y_test = data.iloc[:,8].values
14 
15 model = Sequential()  # 建立模型
16 model.add(Dense(input_dim = 8, units = 8))
17 model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
18 model.add(Dense(input_dim = 8, units = 1))
19 model.add(Activation('sigmoid'))  # 由于是0-1输出,用sigmoid函数作为激活函数
20 model.compile(loss = 'mean_squared_error', optimizer = 'adam')
21 # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary
22 # 另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。
23 # 求解方法我们指定用adam,还有sgd、rmsprop等可选
24 model.fit(x_test, y_test, epochs = 1000, batch_size = 10)
25 predict_x=model.predict(x_test)
26 classes_x=np.argmax(predict_x,axis=1)
27 yp = classes_x.reshape(len(y_test))
28 
29 def cm_plot(y, yp):
30   from sklearn.metrics import confusion_matrix
31   cm = confusion_matrix(y, yp)
32   import matplotlib.pyplot as plt
33   plt.matshow(cm, cmap=plt.cm.Greens)
34   plt.colorbar()
35   for x in range(len(cm)):
36     for y in range(len(cm)):
37       plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center')
38   plt.ylabel('True label')
39   plt.xlabel('Predicted label')
40   return plt
41 cm_plot(y_test,yp).show()# 显示混淆矩阵可视化结果
42 score  = model.evaluate(x_test,y_test,batch_size=128)  # 模型评估
43 print(score)

结果以及混淆矩阵可视化如下:

二、然后我们使用逻辑回归模型进行分析和预测:

import pandas as pd
inputfile = 'C:/Users/76319/Desktop/bankloan.xls'
data = pd.read_excel(inputfile)
print (data.head())
X = data.drop(columns='违约')
y = data['违约']
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(y_pred)
from sklearn.metrics import accuracy_score
score = accuracy_score(y_pred, y_test)
print(score)
def cm_plot(y, y_pred):
  from sklearn.metrics import confusion_matrix #导入混淆矩阵函数
  cm = confusion_matrix(y, y_pred) #混淆矩阵
  import matplotlib.pyplot as plt #导入作图库
  plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。
  plt.colorbar() #颜色标签
  for x in range(len(cm)): #数据标签
    for y in range(len(cm)):
      plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center')
  plt.ylabel('True label') #坐标轴标签
  plt.xlabel('Predicted label') #坐标轴标签
  return plt
cm_plot(y_test, y_pred).show()

结果如下:

综上所述得出,两种算法模型总体上跑出来的准确率还是不错的,但是神经网络准确性更高一点。

相关推荐

离谱!写了5年Vue,还不会自动化测试?

前言大家好,我是倔强青铜三。是一名热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新,欢迎关注我,微信公众号:倔强青铜三。Playwright是一个功能强大的端到...

package.json 与 package-lock.json 的关系

模块化开发在前端越来越流行,使用node和npm可以很方便的下载管理项目所需的依赖模块。package.json用来描述项目及项目所依赖的模块信息。那package-lock.json和...

Github 标星35k 的 SpringBoot整合acvtiviti开源分享,看完献上膝盖

前言activiti是目前比较流行的工作流框架,但是activiti学起来还是费劲,还是有点难度的,如何整合在线编辑器,如何和业务表单绑定,如何和系统权限绑定,这些问题都是要考虑到的,不是说纯粹的把a...

Vue3 + TypeScript 前端研发模板仓库

我们把这个Vue3+TypeScript前端研发模板仓库的初始化脚本一次性补全到可直接运行的状态,包括:完整的目录结构所有配置文件研发规范文档示例功能模块(ExampleFeature)...

Vue 2迁移Vue 3:从响应式到性能优化

小伙伴们注意啦!Vue2已经在2023年底正式停止维护,再不升级就要面临安全漏洞没人管的风险啦!而且Vue3带来的性能提升可不是一点点——渲染速度快40%,内存占用少一半,更新速度直接翻倍!还在...

VUE学习笔记:声明式渲染详解,对比WEB与VUE

声明式渲染是指使用简洁的模板语法,声明式的方式将数据渲染进DOM系统。声明式是相对于编程式而言,声明式是面向对象的,告诉框架做什么,具体操作由框架完成。编程式是面向过程思想,需要手动编写代码完成具...

苏州web前端培训班, 苏州哪里有web前端工程师培训

前端+HTML5德学习内容:第一阶段:前端页面重构:PC端网站布局、HTML5+CSS3基础项目、WebAPP页面布局;第二阶段:高级程序设计:原生交互功能开发、面向对象开发与ES5/ES6、工具库...

跟我一起开发微信小程序——扩展组件的代码提示补全

用户自定义代码块步骤:1.HBuilderX中工具栏:工具-代码块设置-vue代码块2.通过“1”步骤打开设置文件...

JimuReport 积木报表 v1.9.3发布,免费可视化报表

项目介绍积木报表JimuReport,是一款免费的数据可视化报表,含报表、大屏和仪表盘,像搭建积木一样完全在线设计!功能涵盖:数据报表、打印设计、图表报表、门户设计、大屏设计等!...

软开企服开源的无忧企业文档(V2.1.3)产品说明书

目录1....

一款面向 AI 的下一代富文本编辑器,已开源

简介AiEditor是一个面向AI的下一代富文本编辑器。开箱即用、支持所有前端框架、支持Markdown书写模式什么是AiEditor?AiEditor是一个面向AI的下一代富文本编辑...

玩转Markdown(2)——抽象语法树的提取与操纵

上一篇玩转Markdown——数据的分离存储与组件的原生渲染发布,转眼已经鸽了大半年了。最近在操纵mdast生成md文件的时候,心血来潮,把玩转Markdown(2)给补上了。...

DeepseekR1+ollama+dify1.0.0搭建企业/个人知识库(入门避坑版)

找了网上的视频和相关文档看了之后,可能由于版本不对或文档格式不对,很容易走弯路,看完这一章,可以让你少踩三天的坑。步骤和注意事项我一一列出来:1,前提条件是在你的电脑上已配置好ollama,dify1...

升级JDK17的理由,核心是降低GC时间

升级前后对比升级方法...

一个vsCode格式化插件_vscode格式化插件缩进量

ESlint...

取消回复欢迎 发表评论: