百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Python数据分析笔记#6.2.4 Pandas-算术运算

ztj100 2024-12-01 07:02 15 浏览 0 评论



「目录」

  • 6.1 => Pandas的数据结构
  • 6.2 => Pandas的基本功能

--------> reindex重新索引

--------> drop丢弃数据

--------> 索引和选取

--------> 算术运算

  • 6.3 => 数学和统计方法


pandas的算术运算

pandas创始人说,pandas最重要的一个功能是可以对不同索引的对象进行算术运算。

在将对象(Series或DataFrame)相加时,如果存在不同的索引,结果的索引就是这些索引的并集。

没看懂的话,下面看几个例子:

对于Series

In [1]: import pandas as pd

In [2]: s1 = pd.Series([1, 2, 3, 4], index=['a', 'c', 'd', 'e'])

In [3]: s2 = pd.Series([5, 6, 7, 8], index=['a', 'c', 'e', 'f', 'g'])

In [4]: s1
Out[4]:
a    1
c    2
d    3
e    4
dtype: int64

In [5]: s2
Out[5]:
a    5
c    6
e    7
f    8
g    9
dtype: int64

这里s1和s2的索引有部分不一样,将他们相加就会:

In [7]: s1 + s2
Out[7]:
a     6.0
c     8.0
d     NaN
e    11.0
f     NaN
g     NaN
dtype: float64

?

NaN是Not a Number的意思

?

自动的数据对齐操作会在不重叠的索引处引入NA值。


对于DataFrame

In [10]: import numpy as np

In [11]: df1 = pd.DataFrame(np.arange(9).reshape((3, 3)), index = ['Shanghai', 'Beijing', 'Chengdu'],                columns = ['a', 'b', 'c'] )

In [12]: df2 = pd.DataFrame(np.arange(12).reshape((4, 3)), index = ['Shanghai', 'Beijing', 'Shenzhen',                'Chengdu'], columns = ['b', 'c', 'd'])

In [13]: df1
Out[13]:
          a  b  c
Shanghai  0  1  2
Beijing   3  4  5
Chengdu   6  7  8

In [14]: df2
Out[14]:
          b   c   d
Shanghai  0   1   2
Beijing   3   4   5
Shenzhen  6   7   8
Chengdu   9  10  11

将df1和df2相加后会返回一个新的DataFrame,索引和列为原来两个DataFrame的并集:

In [20]: df1 + df2
Out[20]:
           a     b     c   d
Beijing  NaN   7.0   9.0 NaN
Chengdu  NaN  16.0  18.0 NaN
Shanghai NaN   1.0   3.0 NaN
Shenzhen NaN   NaN   NaN NaN


填充值

我们可以看到在对不同索引的对象进行算术运算时,如果某个对象中找不到对应位置的值(NaN),可以填充一个值。

以上面为例,可以使用df1的add方法,传入df2以及一个fill_value参数:

In [5]: df1.add(df2, fill_value=0)
Out[5]:
            a     b     c     d
Beijing   3.0   7.0   9.0   5.0
Chengdu   6.0  16.0  18.0  11.0
Shanghai  0.0   1.0   3.0   2.0
Shenzhen  NaN   6.0   7.0   8.0

你看上面df1的(Beijing, a)项找不到df2的(Beijing, a)项时,用填充值(fill_value=0)代替了,所以结果不再是NaN,而是3+0=3。


翻转参数

flip参数,除了下面例子的div和rdiv,还有add和radd等,用法看例子就懂了:

In [8]: 1 / df1
Out[8]:
                 a         b      c
Shanghai       inf  1.000000  0.500
Beijing   0.333333  0.250000  0.200
Chengdu   0.166667  0.142857  0.125

In [9]: df1.rdiv(1)
Out[9]:
                 a         b      c
Shanghai       inf  1.000000  0.500
Beijing   0.333333  0.250000  0.200
Chengdu   0.166667  0.142857  0.125

?

inf代表infinity,无穷的意思

?


DataFrame和Series之间的运算

默认情况,DataFrame和Series之间的算术运算会将Series的索引匹配到DataFrame的列索引,然后一行一行向下传播(broadcast):

In [10]: frame = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list('bde'), index=['Utah', 'Ohio',                'Texas', 'Oregon'])

In [11]: series = frame.iloc[0]

In [12]: frame
Out[12]:
        b   d   e
Utah    0   1   2
Ohio    3   4   5
Texas   6   7   8
Oregon  9  10  11

In [13]: series
Out[13]:
b    0
d    1
e    2
Name: Utah, dtype: int32

In [14]: frame - series
Out[14]:
        b  d  e
Utah    0  0  0
Ohio    3  3  3
Texas   6  6  6
Oregon  9  9  9

当某个索引值在DataFrame的列或Series的索引中找不到,则参与运算的两个对象的索引会形成并集,像下面这样:

In [15]: series2 = pd.Series(range(3), index=['b', 'e', 'f'])

In [16]: series2
Out[16]:
b    0
e    1
f    2
dtype: int64

In [18]: frame + series2
Out[18]:
          b   d     e   f
Utah    0.0 NaN   3.0 NaN
Ohio    3.0 NaN   6.0 NaN
Texas   6.0 NaN   9.0 NaN
Oregon  9.0 NaN  12.0 NaN

如果我们要沿着列传播,要使用算术运算方法,传入参数axis='index'或者axis=0代表我们要匹配index的轴,然后一列一列进行算术运算:

In [19]: series3 = frame['d']

In [20]: series3
Out[20]:
Utah       1
Ohio       4
Texas      7
Oregon    10
Name: d, dtype: int32

In [21]: frame.sub(series3, axis='index')
Out[21]:
        b  d  e
Utah   -1  0  1
Ohio   -1  0  1
Texas  -1  0  1
Oregon -1  0  1



相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: