Python:基于 RGB-D 图像的点云计算
ztj100 2024-12-01 07:00 11 浏览 0 评论
在本教程中,我们将学习如何在不使用 Open3D 库的情况下从深度图像计算点云。我们还将展示如何优化代码以获得更好的性能。
1. 深度图像
深度图像(也称为深度图)是一种图像,其中每个像素提供相对于传感器坐标系的距离值。深度图像可以通过结构光或飞行时间传感器捕获。为了计算深度数据,结构光传感器(例如 Microsoft Kinect V1)会比较投射光和接收光之间的变化。至于像微软Kinect V2这样的飞行时间传感器,它们投射光线,然后计算从投射到随后接收光线的时间间隔。
除了深度图像外,一些传感器还提供其对应的RGB图像以形成RGB- D图像。这使得计算彩色点云成为可能。本教程将以微软Kinect V1 RGB-D图像为例。
让我们从导入Python库开始:
import imageio.v3 as iio
import numpy as np
import matplotlib.pyplot as plt
import open3d as o3d
现在,我们可以导入深度图像并打印其分辨率和类型:
# Read depth image:
depth_image = iio.imread('data/depth.png')
# print properties:
print(f"Image resolution: {depth_image.shape}")
print(f"Data type: {depth_image.dtype}")
print(f"Min value: {np.min(depth_image)}")
print(f"Max value: {np.max(depth_image)}")
#输出
Image resolution: (480, 640)
Data type: int32
Min value: 0
Max value: 2980
深度图像是一个大小为640×480的矩阵,其中每个像素都是32(或16)位整数,表示以毫米为单位的距离,因此,当打开深度图像时,它看起来是黑色的(见下图)。最小值0表示噪声(没有距离),最大值2980表示最远像素的距离。
为了更好的可视化,我们计算它的灰度图像:
depth_instensity = np.array(256 * depth_image / 0x0fff,
dtype=np.uint8)
iio.imwrite('output/grayscale.png', depth_instensity)
计算灰度图像意味着将深度值缩放到[0, 255]. 现在图像更清晰了:
请注意,在可视化深度图像时,Matplotlib 会做同样的事情:
# Display depth and grayscale image:
fig, axs = plt.subplots(1, 2)
axs[0].imshow(depth_image, cmap="gray")
axs[0].set_title('Depth image')
axs[1].imshow(depth_grayscale, cmap="gray")
axs[1].set_title('Depth grayscale image')
plt.show()
2.点云
现在我们已经导入并显示了深度图像,我们如何根据它估计点云呢?首先对深度相机进行标定,估计相机矩阵,然后用它来计算点云。得到的点云也被称为2.5D点云,因为它是从 2D 投影(深度图像)而不是 3D 传感器(如激光传感器)估计的。
2.1 深度相机标定
标定相机意味着通过寻找畸变系数和相机矩阵来估计镜头和传感器参数。一般来说,标定相机有三种方法:使用工厂提供的标准参数,使用标定研究中获得的结果或手动标定Kinect。手动标定包括标定算法,如棋盘格标定法。标定矩阵M是一个3×3矩阵:
其中fx、fy和cx、cy分别为焦距和光心。对于本教程,我们将使用NYU Depth V2数据集获得的结果:
# Depth camera parameters:
FX_DEPTH = 5.8262448167737955e+02
FY_DEPTH = 5.8269103270988637e+02
CX_DEPTH = 3.1304475870804731e+02
CY_DEPTH = 2.3844389626620386e+02
2.2 点云计算
这里计算点云意味着将深度像素从深度图像2D坐标系转换到深度相机3D坐标系(x, y和z)。3D坐标使用以下公式计算,其中depth(i, j)为第i行和第j列处的深度值:
该公式适用于每个像素:
# compute point cloud:
pcd = []
height, width = depth_image.shape
for i in range(height):
for j in range(width):
z = depth_image[i][j]
x = (j - CX_DEPTH) * z / FX_DEPTH
y = (i - CY_DEPTH) * z / FY_DEPTH
pcd.append([x, y, z])
让我们使用 Open3D 库显示它:
pcd_o3d = o3d.geometry.PointCloud() # create point cloud object
pcd_o3d.points = o3d.utility.Vector3dVector(pcd) # set pcd_np as the point cloud points
# Visualize:
o3d.visualization.draw_geometries([pcd_o3d])
3.彩色点云
如果我们想从RGB-D图像中计算彩色点云怎么办呢?颜色信息可以提高点云配准等许多任务的性能。彩色点云的定义如下:
其中x, y, z为3D坐标,r, g, b为RGB系统中的颜色。
我们首先导入前面深度图像对应的RGB图像:
# Read the rgb image:
rgb_image = iio.imread('../data/rgb.jpg')
# Display depth and grayscale image:
fig, axs = plt.subplots(1, 2)
axs[0].imshow(depth_image, cmap="gray")
axs[0].set_title('Depth image')
axs[1].imshow(rgb_image)
axs[1].set_title('RGB image')
plt.show()
要查找深度传感器 3D 坐标系中定义的给定点p(x, y,z)的颜色:
1.我们将其转换为RGB相机坐标系[2]:
其中R和T为两个相机之间的外部参数:分别为旋转矩阵和平移向量。
类似地,我们使用NYU Depth V2数据集的参数:
# Rotation matrix:
R = -np.array([[9.9997798940829263e-01, 5.0518419386157446e-03, 4.3011152014118693e-03],
[-5.0359919480810989e-03, 9.9998051861143999e-01, -3.6879781309514218e-03],
[- 4.3196624923060242e-03, 3.6662365748484798e-03, 9.9998394948385538e-01]])
# Translation vector:
T = np.array([2.5031875059141302e-02, -2.9342312935846411e-04, 6.6238747008330102e-04])
RGB相机坐标系中的点计算如下:
"""
Convert the point from depth sensor 3D coordinate system
to rgb camera coordinate system:
"""
[x_RGB, y_RGB, z_RGB] = np.linalg.inv(R).dot([x, y, z]) - np.linalg.inv(R).dot(T)
2. 利用RGB相机的固有参数,将其映射到彩色图像坐标系
注意,在前面的公式中,焦距和光心是RGB相机的参数。类似地,我们使用NYU Depth V2数据集的参数:
# RGB camera intrinsic Parameters:
FX_RGB = 5.1885790117450188e+02
FY_RGB = 5.1946961112127485e+02
CX_RGB = 3.2558244941119034e+0
CY_RGB = 2.5373616633400465e+02
对应像素的索引计算如下:
"""
Convert from rgb camera coordinate system
to rgb image coordinate system:
"""
j_rgb = int((x_RGB * FX_RGB) / z_RGB + CX_RGB + width / 2)
i_rgb = int((y_RGB * FY_RGB) / z_RGB + CY_RGB)
让我们把所有东西放在一起并显示点云:
colors = []
pcd = []
for i in range(height):
for j in range(width):
"""
Convert the pixel from depth coordinate system
to depth sensor 3D coordinate system
"""
z = depth_image[i][j]
x = (j - CX_DEPTH) * z / FX_DEPTH
y = (i - CY_DEPTH) * z / FY_DEPTH
"""
Convert the point from depth sensor 3D coordinate system
to rgb camera coordinate system:
"""
[x_RGB, y_RGB, z_RGB] = np.linalg.inv(R).dot([x, y, z]) - np.linalg.inv(R).dot(T)
"""
Convert from rgb camera coordinates system
to rgb image coordinates system:
"""
j_rgb = int((x_RGB * FX_RGB) / z_RGB + CX_RGB + width / 2)
i_rgb = int((y_RGB * FY_RGB) / z_RGB + CY_RGB)
# Add point to point cloud:
pcd.append([x, y, z])
# Add the color of the pixel if it exists:
if 0 <= j_rgb < width and 0 <= i_rgb < height:
colors.append(rgb_image[i_rgb][j_rgb] / 255)
else:
colors.append([0., 0., 0.])
# Convert to Open3D.PointCLoud:
pcd_o3d = o3d.geometry.PointCloud() # create a point cloud object
pcd_o3d.points = o3d.utility.Vector3dVector(pcd)
pcd_o3d.colors = o3d.utility.Vector3dVector(colors)
# Visualize:
o3d.visualization.draw_geometries([pcd_o3d])
4.代码优化
在本节中,我们将解释如何优化代码,使其更高效,更适合实时应用程序。
4.1 点云
使用嵌套循环计算点云非常耗时。对于分辨率为480×640的深度图像,在一台拥有8GB RAM和i7-4500 CPU的机器上,计算点云大约需要2.154秒。
为了减少计算时间,可以用向量化操作取代嵌套循环,计算时间可减少至约0.024秒:
# get depth resolution:
height, width = depth_im.shape
length = height * width
# compute indices:
jj = np.tile(range(width), height)
ii = np.repeat(range(height), width)
# rechape depth image
z = depth_im.reshape(length)
# compute pcd:
pcd = np.dstack([(ii - CX_DEPTH) * z / FX_DEPTH,
(jj - CY_DEPTH) * z / FY_DEPTH,
z]).reshape((length, 3))
我们还可以通过在开始时计算一次常数来将计算时间减少到大约0.015秒:
# compute indices:
jj = np.tile(range(width), height)
ii = np.repeat(range(height), width)
# Compute constants:
xx = (jj - CX_DEPTH) / FX_DEPTH
yy = (ii - CY_DEPTH) / FY_DEPTH
# transform depth image to vector of z:
length = height * width
z = depth_image.reshape(height * width)
# compute point cloud
pcd = np.dstack((xx * z, yy * z, z)).reshape((length, 3))
4.2 彩色点云
至于彩色点云,在同一台机器上,执行前面的示例大约需要36.263秒。通过应用向量化,运行时间减少到0.722秒。
# compute indices:
jj = np.tile(range(width), height)
ii = np.repeat(range(height), width)
# Compute constants:
xx = (jj - CX_DEPTH) / FX_DEPTH
yy = (ii - CY_DEPTH) / FY_DEPTH
# transform depth image to vector of z:
length = height * width
z = depth_image.reshape(length)
# compute point cloud
pcd = np.dstack((xx * z, yy * z, z)).reshape((length, 3))
cam_RGB = np.apply_along_axis(np.linalg.inv(R).dot, 1, pcd) - np.linalg.inv(R).dot(T)
xx_rgb = ((cam_RGB[:, 0] * FX_RGB) / cam_RGB[:, 2] + CX_RGB + width / 2).astype(int).clip(0, width - 1)
yy_rgb = ((cam_RGB[:, 1] * FY_RGB) / cam_RGB[:, 2] + CY_RGB).astype(int).clip(0, height - 1)
colors = rgb_image[yy_rgb, xx_rgb]
5. 结论
在本教程中,我们学习了如何从 RGB-D 数据来计算点云。
相关推荐
- 电脑装系统用GHOST好,还是原装版本好?老司机都是这么装的
-
Hello大家好,我是兼容机之家的咖啡。安装Windows系统是原版ISO好还是ghost好呢?针对这个的问题,我们先来科普一下什么是ghost系统,和原版ISO镜像两者之间有哪些优缺点。如果是很了解...
- 苹果 iOS 14.5.1/iPadOS 14.5.1 正式版发布
-
IT之家5月4日消息今日凌晨,苹果发布了iOS14.5.1与iPadOS14.5.1正式版更新。这一更新距iOS14.5正式版发布过去了一周时间。IT之家了解到,苹果表示,...
- iOS 13.1.3 正式版发布 包含错误修复和改进
-
苹果今天发布了iOS13.1.3和iPadOS13.1.3,这是iOS13发布之后第四个升级补丁。iOS13.1.2两周前发布。iOS13.1.3主要包括针对iPad和...
- 还不理解 Error 和 Exception 吗,看这篇就够了
-
在Java中的基本理念是结构不佳的代码不能运行,发现错误的理想时期是在编译期间,因为你不用运行程序,只是凭借着对Java基本理念的理解就能发现问题。但是编译期并不能找出所有的问题,有一些N...
- Linux 开发人员发现了导致 MacBook“无法启动”的 macOS 错误
-
“多个严重”错误影响配备ProMotion显示屏的MacBookPro。...
- 启动系统时无法正常启动提示\windows\system32\winload.efi
-
启动系统时无法正常启动提示\windows\system32\winload.efi。该怎么解决? 最近有用户遇到了开机遇到的问题,是Windows未能启动。原因可能是最近更改了硬件或软件。虽然提...
- 离线部署之两种构建Ragflow镜像的方式,dify同理
-
在实际项目交付过程中,经常遇到要离线部署的问题,生产服务器无法连接外网,这时就需要先构建好ragflow镜像,然后再拷到U盘或刻盘,下面介绍两种构建ragflow镜像的方式。性能测试(网络情况好的情况...
- Go语言 error 类型详解(go语言 异常)
-
Go语言的error类型是用于处理程序运行中错误情况的核心机制。它通过显式的返回值(而非异常抛出)来管理错误,强调代码的可控性和清晰性。以下是详细说明及示例:一、error类型的基本概念内置接口...
- Mac上“闪烁的问号”错误提示如何修复?
-
现在Mac电脑的用户越来越多,Mac电脑在使用过程中也会出现系统故障。当苹果电脑无法找到系统软件时,Mac会给出一个“闪烁的问号”的标志。很多用户受到过闪烁问号这一常见的错误提示的影响,如何解决这个问...
- python散装笔记——177 sys 模块(python sys模块详解)
-
sys模块提供了访问程序运行时环境的函数和值,例如命令行参数...
- 30天自制操作系统:第一天(30天自制操作系统电子书)
-
因为咱们的目的是为了研究操作系统的组成,所以直接从系统启动的第二阶段的主引导记录开始。前提是将编译工具放在该文件目录的同级目录下,该工具为日本人川合秀实自制的编译程序,优化过的nasm编译工具。...
- 五大原因建议您现在不要升级iOS 13或iPadOS
-
今天苹果放出了iPadOS和iOS13的公测版本,任何对新版功能感兴趣的用户都可以下载安装参与测试。除非你想要率先体验Dark模式,以及使用AppleID来登陆Facebook等服务,那么外媒CN...
- Python安装包总报错?这篇解决指南让你告别pip烦恼!
-
在Python开发中,...
- 苹果提供了在M1 Mac上修复macOS重装错误的方案
-
#AppleM1芯片#在苹果新的M1Mac推出后不久,我们看到有报道称,在这些机器上恢复和重新安装macOS,可能会导致安装错误,使你的Mac无法使用。具体来说,错误信息如下:"An...
- 黑苹果卡代码篇三:常见卡代码问题,满满的干货
-
前言...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 电脑装系统用GHOST好,还是原装版本好?老司机都是这么装的
- 苹果 iOS 14.5.1/iPadOS 14.5.1 正式版发布
- iOS 13.1.3 正式版发布 包含错误修复和改进
- 还不理解 Error 和 Exception 吗,看这篇就够了
- Linux 开发人员发现了导致 MacBook“无法启动”的 macOS 错误
- 启动系统时无法正常启动提示\windows\system32\winload.efi
- 离线部署之两种构建Ragflow镜像的方式,dify同理
- Go语言 error 类型详解(go语言 异常)
- Mac上“闪烁的问号”错误提示如何修复?
- python散装笔记——177 sys 模块(python sys模块详解)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)