百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Day180:stack()函数解析

ztj100 2024-11-21 00:29 12 浏览 0 评论

stack()与transpose()的相关性

stack()具体变换过程其实是和transpose()很相似的,只是transpose()需要一个元组来设计变换后的shape,而stack()只要一个axis来指定变换后的shape

那么,最令人费解的是什么,是变换后的数,这也是两个函数的共同点,这两个函数,对传入的数不管是列表也好,元组也好,都会先使用numpy.array()变换,变换后的数组会是作为一个原型,以后所有的Numpy.transpose()和Numpy.stack()的作用都是在这个原型的基础上旋转得来的,举例来说,当输入的原型是三维的,你可以想象成一个立方体,所有你做的变换最终得到的数组的数字排列,只是这个立方体从不同的角度看得到的多维数组,各个数字之间的相对位置是不变的。这个只能想,没法画。

https://blog.csdn.net/qq_24631105/article/details/82693347

stack()函数
函数原型为:stack(arrays, axis=0),arrays可以传数组和列表。

axis: 0,1,2,3,…是从外开始剥,-n,-n+1,…,-3,-2,-1是从里开始剥

import numpy as np
a=[[[1,2,3,4],[11,21,31,41]],
   [[5,6,7,8],[51,61,71,81]],
   [[9,10,11,12],[91,101,111,121]]]
print("列表a如下:")
print(a)

print("新维度的下标为0")
c=np.stack(a,axis=0)
print(c)

print("新维度的下标为1")
c=np.stack(a,axis=1)
print(c)

print("新维度的下标为2")
c=np.stack(a,axis=2)
print(c)
列表a如下:
[[[1, 2, 3, 4], [11, 21, 31, 41]], [[5, 6, 7, 8], [51, 61, 71, 81]], [[9, 10, 11, 12], [91, 101, 111, 121]]]
新维度的下标为0
[[[  1   2   3   4]
  [ 11  21  31  41]]

 [[  5   6   7   8]
  [ 51  61  71  81]]

 [[  9  10  11  12]
  [ 91 101 111 121]]]
新维度的下标为1
[[[  1   2   3   4]
  [  5   6   7   8]
  [  9  10  11  12]]

 [[ 11  21  31  41]
  [ 51  61  71  81]
  [ 91 101 111 121]]]
新维度的下标为2
[[[  1   5   9]
  [  2   6  10]
  [  3   7  11]
  [  4   8  12]]

 [[ 11  51  91]
  [ 21  61 101]
  [ 31  71 111]
  [ 41  81 121]]]

个人理解:

其中原数组a的shape为(3,2,4),即是一个三维数组。有3个维度。其中每个元素的都有一个索引。比如数字1的索引为[0,0,0],2的索引为[0,0,1],31的是[0,1,2],41的是[0,1,3],....5的是[1, 0,0], .8的是[1,0,3].9的索引是[2,0,0],等等。

其中,stack(a, axis=0),axis的值不能大于等于数组的维度。axis=0时,元素的索引值不变,仍是原来的索引,每个维度上的值不变,方向不变。

stack(a, axis=1), 个人理解,就是将数组中元素第0个维度的数值换到第1维度。如31就由[0,1,2]变为[1,0,2],41就由[0,1,3]变为[1,0,3], 8就由[1,0,3]变为[0,1,3],以此类推。所以数组的shape就变为了(2,3,4)

stack(a, axis=2) , 就是将数组中每个元素的第0个维度的索引值移到第2维度,原先的第1,第2维的索引值一起前移。如31就由[0,1,2]变为[1,2,0],41就由[0,1,3]变为[1,3,0],8就由[1,0,3]变为[0,3,1],以此类推。所以数组的shape就变为了(2,4,3)

2. hstack()函数

a = np.array([1,2,3])  
b = np.array([4,5,6])
c=[[[1,2,3,4],[11,21,31,41]],
   [[5,6,7,8],[51,61,71,81]],
   [[9,10,11,12],[91,101,111,121]]]
print('一维数组:')
print(np.hstack((a,b)))

a = np.array([[1],[2],[3]])
b = np.array([[4],[5],[6]])
print('二维数组:')
print(np.hstack((a,b)))

a = np.array([[[1],[11]],
              [[2],[21]],
              [[3],[31]]])

b = np.array([[[4],[41]],
              [[5],[51]],
              [[6],[61]]])
print('三维数组:')
print(np.hstack((a,b)))

print('三维数组2:')
print(np.hstack(c))
一维数组:
[1 2 3 4 5 6]
二维数组:
[[1 4]
 [2 5]
 [3 6]]
三维数组:
[[[ 1]
  [11]
  [ 4]
  [41]]

 [[ 2]
  [21]
  [ 5]
  [51]]

 [[ 3]
  [31]
  [ 6]
  [61]]]
三维数组2:
[[  1   2   3   4   5   6   7   8   9  10  11  12]
 [ 11  21  31  41  51  61  71  81  91 101 111 121]]

未完待续。

3. vstack()函数

a = np.array([1,2,3])  
b = np.array([4,5,6])
c=[[[1,2,3,4],[11,21,31,41]],
   [[5,6,7,8],[51,61,71,81]],
   [[9,10,11,12],[91,101,111,121]]]
print('一维数组:')
print(np.vstack((a,b)))

a = np.array([[1],[2],[3]])  
b = np.array([[4],[5],[6]])
print('二维数组:')
print(np.vstack((a,b)))

a = np.array([[[1],[11]],
              [[2],[21]],
              [[3],[31]]])

b = np.array([[[4],[41]],
              [[5],[51]],
              [[6],[61]]])
print('三维数组:')
print(np.vstack((a,b)))

print('三维数组2:')
print(np.vstack(c))
一维数组:
[[1 2 3]
 [4 5 6]]
二维数组:
[[1]
 [2]
 [3]
 [4]
 [5]
 [6]]
三维数组:
[[[ 1]
  [11]]

 [[ 2]
  [21]]

 [[ 3]
  [31]]

 [[ 4]
  [41]]

 [[ 5]
  [51]]

 [[ 6]
  [61]]]
三维数组2:
[[  1   2   3   4]
 [ 11  21  31  41]
 [  5   6   7   8]
 [ 51  61  71  81]
 [  9  10  11  12]
 [ 91 101 111 121]]

原文:https://my.oschina.net/amui/blog/1601432

参考:https://blog.csdn.net/qq_24631105/article/details/82693347

参考:https://blog.csdn.net/yyl424525/article/details/100104177

相关推荐

利用navicat将postgresql转为mysql

导航"拿来主义"吃得亏自己动手,丰衣足食...

Navicat的详细教程「偷偷收藏」(navicatlite)

Navicat是一套快速、可靠并价格适宜的数据库管理工具,适用于三种平台:Windows、macOS及Linux。可以用来对本机或远程的MySQL、SQLServer、SQLite、...

Linux系统安装SQL Server数据库(linux安装数据库命令)

一、官方说明...

Navicat推出免费数据库管理软件Premium Lite

IT之家6月26日消息,Navicat推出一款免费的数据库管理开发工具——NavicatPremiumLite,针对入门级用户,支持基础的数据库管理和协同合作功能。▲Navicat...

Docker安装部署Oracle/Sql Server

一、Docker安装Oracle12cOracle简介...

Docker安装MS SQL Server并使用Navicat远程连接

...

Web性能的计算方式与优化方案(二)

通过前面《...

网络入侵检测系统之Suricata(十四)——匹配流程

其实规则的匹配流程和加载流程是强相关的,你如何组织规则那么就会采用该种数据结构去匹配,例如你用radixtree组织海量ip规则,那么匹配的时候也是采用bittest确定前缀节点,然后逐一左右子树...

使用deepseek写一个图片转换代码(deepnode处理图片)

写一个photoshop代码,要求:可以将文件夹里面的图片都处理成CMYK模式。软件版本:photoshop2022,然后生成的代码如下://Photoshop2022CMYK批量转换专业版脚...

AI助力AUTOCAD,生成LSP插件(ai里面cad插件怎么使用)

以下是用AI生成的,用AUTOLISP语言编写的cad插件,分享给大家:一、将单线偏移为双线;;;;;;;;;;;;;;;;;;;;;;单线变双线...

Core Audio音频基础概述(core 音乐)

1、CoreAudioCoreAudio提供了数字音频服务为iOS与OSX,它提供了一系列框架去处理音频....

BlazorUI 组件库——反馈与弹层 (1)

组件是前端的基础。组件库也是前端框架的核心中的重点。组件库中有一个重要的板块:反馈与弹层!反馈与弹层在组件形态上,与Button、Input类等嵌入界面的组件有所不同,通常以层的形式出现。本篇文章...

怎样创建一个Xcode插件(xcode如何新建一个main.c)

译者:@yohunl译者注:原文使用的是xcode6.3.2,我翻译的时候,使用的是xcode7.2.1,经过验证,本部分中说的依然是有效的.在文中你可以学习到一系列的技能,非常值得一看.这些技能不单...

让SSL/TLS协议流行起来:深度解读SSL/TLS实现1

一前言SSL/TLS协议是网络安全通信的重要基石,本系列将简单介绍SSL/TLS协议,主要关注SSL/TLS协议的安全性,特别是SSL规范的正确实现。本系列的文章大体分为3个部分:SSL/TLS协...

社交软件开发6-客户端开发-ios端开发验证登陆部分

欢迎订阅我的头条号:一点热上一节说到,Android客户端的开发,主要是编写了,如何使用Androidstudio如何创建一个Android项目,已经使用gradle来加载第三方库,并且使用了异步...

取消回复欢迎 发表评论: